| Víctor Pérez-Galicia | Universidad Nacional Autónoma de México |
| Fernanda Ramos-García | Universidad Nacional Autónoma de México |
| Víctor Cárdenas | Universidad Autónoma de San Luis Potosí |
| Gerardo Espinosa-Pérez | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2025.060
Resumen: This paper presents a systematic methodology to model conduction losses of passive and active elements of power converters within the Port Controlled Hamiltonian (PCH) framework. The motivation behind this approach is not only to achieve a more realistic system representation, preserving the Hamiltonian structure, but also to enable the development and analysis of control schemes that optimize transient performance. The Port-Hamiltonian models for the two basic DC-DC converter topologies, Buck and Boost, are unified into a generalized structure. Finally, the proposed model is validated numerically through MATLAB®-Simulink® simulation comparing the ideal model, the proposed PCH model, with a reference in a Simscape implementation.

¿Cómo citar?
Pérez-Galicia, V., Ramos-García, F., Cárdenas, V. & Espinosa-Pérez, G. (2025). A Generalized Port-Hamiltonian Approach to Modeling Losses in DC-DC Converters. Memorias del Congreso Nacional de Control Automático 2025, pp. 349-354. https://doi.org/10.58571/CNCA.AMCA.2025.060
Palabras clave
Power Converters, Modeling Losses, Port-Controlled Hamiltonian Systems, Passivity Based Control.
Referencias
- Díaz Rodríguez, C.A., Romano Torres, W.N., and Gallego Rodríguez, G.E. (2024). Diseño e implementación de un convertidor Boost regulado empleando una estrategia de control PI. Scientia et Technica, 29(02), 73–88. doi:10.22517/23447214.25452.
- El Fadil, H., Giri, F., Haloua, M., and Ouadi, H. (2003). Nonlinear and adaptive control of buck power converters. In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), 4475– 4480. IEEE, Maui, HI, USA. doi:10.1109/CDC.2003.1272244.
- Hassan, M.A., Li, E.p., Li, X., Li, T., Duan, C., and Chi, S. (2019). Adaptive Passivity-Based Control of dc–dc Buck Power Converter With Constant Power Load in DC Microgrid Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(3), 2029–2040. doi:10.1109/JESTPE.2018.2874449.
- Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., and Escobar, G. (2010). Adaptive PI Stabilization of Switched Power Converters. IEEE Transactions on Control Systems Technology, 18(3), 688–698. doi:10.1109/TCST.2009.2023669.
- Hossain, M., Rahim, N., and Selvaraj, J.A. (2018). Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renewable and Sustainable Energy Reviews, 81, 205– 230. doi:10.1016/j.rser.2017.07.017.
- Jiménez de la Peña, A. (2019). Diseño de convertidor dc/dc con control remoto para smartgrids. Ph.D. thesis.
- Lakomy, K., Madonski, R., Dai, B., Yang, J., Kicki, P., Ansari, M., and Li, S. (2022). Active Disturbance Rejection Control Design With Suppression of Sensor Noise Effects in Application to DC–DC Buck Power Converter. IEEE Transactions on Industrial Electronics, 69(1), 816–824. doi:10.1109/TIE.2021.3055187.
- Nkembi, A.A., Cova, P., Sacchi, E., Coraggioso, E., and Delmonte, N. (2023). A Comprehensive Review of Power Converters for E-Mobility. Energies, 16(4), 1888. doi:10.3390/en16041888.
- Ravindran, R. and Massoud, A.M. (2025). State-of-the-Art DC-DC Converters for Satellite Applications: A Comprehensive Review. Aerospace, 12(2), 97. doi: 10.3390/aerospace12020097.
- Sandoval Rodriguez, G. (2010). Compensación de potencia reactiva en sistemas eléctricos de potencia. Ph.D. thesis, Universidad Nacional Autónoma de México, México.
- Sivakumar, S., Sathik, M.J., Manoj, P., and Sundararajan, G. (2016). An assessment on performance of DC–DC converters for renewable energy applications. Renewable and Sustainable Energy Reviews, 58, 1475–1485. doi:10.1016/j.rser.2015.12.057.
- Zambrano-Prada, D.A., Aroudi, A.E., López-Santos, O., Vázquez-Seisdedos, L., and Martínez-Salamero, L. (2025). Adaptive Sliding Mode Control of a Boost Converter With Unknown Constant Power Load. IEEE Access, 13, 33714–33732. doi:10.1109/ACCESS.2025. 3543659.
