| Matias Iglesias-Rios | Universidad Nacional Autónoma de México |
| Ulises Pérez-Ventura | Universidad Nacional Autónoma de México |
| Leonid Fridman | Universidad Nacional Autónoma de México |
| Hoover Mujica | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2025.019
Resumen: This paper proposes a gain design for Super-Twisting control applied to a Direct Current (DC) motor. The describing function approach is employed to predict the chattering characteristics—specifically, the amplitude and frequency of self-excited oscillations—arising from parasitic dynamics modeled as a transport delay. Based on this analysis, a gain tuning strategy is developed to minimize the amplitude of the dominant harmonic. The effectiveness of the proposed methodology is validated through experimental results on the DC motor.
¿Cómo citar?
Iglesias-Rios, M., Pérez-Ventura, U., Fridman, L. & Mujica, H. (2025). Super-Twisting Gain Adjustment for a Direct Current Motor. Memorias del Congreso Nacional de Control Automático 2025, pp. 109-114. https://doi.org/10.58571/CNCA.AMCA.2025.019
Palabras clave
Continuous Sliding Mode Control, Frequency Domain Analysis, Chattering Analysis.
Referencias
- Baker Jr, G.A. and Gammel, J.L. (1961). The Padé approximant. Journal of Mathematical Analysis and Applications, 2(1), 21–30.
Boiko, I. (2008). Discontinuous control systems: frequencydomain analysis and design. Springer Science & Business Media. - Boiko, I., Iriarte, R., Pisano, A., and Usai, E. (2006). Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators. Automatica, 42(5), 833–839. doi:10.1016/j.automatica.2006.01.009.
- Castellanos, M.I. and Boiko, I. (2008). Parameter identification via modified twisting algorithm. International Journal of Control, 81(5), 788–796.
- Corripio, A.B. (1996). Tuning of Industrial Control Systems. Instrument Society of America (ISA). Gelb, A. and Vander Velde, W.E. (1968). Multipleinput describing functions and nonlinear system design. McGraw-Hill, New York.
- Iglesias-Rios, M., Pérez-Ventura, U., Fridman, L., and Mujica-Ortega, H. (2024). Super-twisting gain design for transfer heat processes based on identification of parasitic dynamics. In 2024 17th International Workshop on Variable Structure Systems (VSS), 13–18. doi:10.1109/VSS61690.2024.10753382.
- Lee, H. and Utkin, V.I. (2007). Chattering suppression methods in sliding mode control systems. Annual Reviews in Control, 31, 179–188. doi:10.1016/j.arcontrol.2007.08.001.
- Levant, A. (1998). Robust exact differentiation via sliding mode technique. Automatica, 34(3), 379–384. doi:10.1016/S0005-1098(97)00209-4.
- Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9-10), 924–941. doi:10.1080/0020717031000099029.
- Medvedeva, T.N., Sumenkov, O.Y., and Fridman, L.M. (2024). Step-test based procedure for super-twisting algorithm gains adjustment. In 2024 17th International Workshop on Variable Structure Systems (VSS), 158–163. doi:10.1109/VSS61690.2024.10753407.
- Panathula, C.B., Rosales, A., and Shtessel, Y.B. (2017). Closing gaps for aircraft attitude higher order sliding mode control certification via practical stability margins identification. IEEE Transactions on Control Systems Technology, 26(6), 2020–2034.
- Pérez-Ventura, U., Escobar, J., Fridman, L., and Iriarte, R. (2023). Design of the second-order robust exact differentiator: A describing function approach. International Journal of Robust and Nonlinear Control, 33(15), 8890–8910.
- Pérez-Ventura, U. and Fridman, L. (2019). Design of super-twisting control gains: A describing function based methodology. Automatica, 99, 175–180. doi:10.1016/j.automatica.2018.10.023.
- Pérez-Ventura, U. and Fridman, L. (2019). When is it reasonable to implement the discontinuous slidingmode controllers instead of the continuous ones? Frequency domain criteria. International Journal of Robust and Nonlinear Control, 29(3), 810–828. doi:10.1002/rnc.4347.
- Pilloni, A., Pisano, A., and Usai, E. (2012). Parameter tuning and chattering adjustment of super-twisting sliding mode control system for linear plants. In 2012 12th International Workshop on Variable Structure Systems, 479–484. doi:10.1109/VSS.2012.6163549.
- Seeber, R. and Horn, M. (2017). Stability proof for a wellestablished super-twisting parameter setting. Automatica, 84, 241–243. doi:10.1016/j.automatica.2017.07.002.
- Shtessel, Y., Edwards, C., Fridman, L., and Levant, A. (2014). Sliding mode control and observation. Birkhäuser, New York.
Utkin, V. (1992). Sliding modes in optimization and control problems. Springer Verlag, New York. - Zucker, I. (2008). The cubic equation-a new look at the irreducible case. The Mathematical Gazette, 92(524), 264–268.

