| Víctor Manuel Valenzuela Hanon | Universidad Autónoma de Baja California |
| Raúl Rascón Carmona | Universidad Autónoma de Baja California |
| Eduardo Javier Moreno Valenzuela | Instituto Politécnico Nacional |
| Ernesto Rios Valenzuela | Universidad Autónoma de Baja California |
| Ivonne Gabriela Zepeda Valencia | Universidad Autónoma de Baja California |
| Luis Omar Moreno Ahedo | Universidad Autónoma de Baja California |
https://doi.org/10.58571/CNCA.AMCA.2025.040
Resumen: The following work addresses the trajectory tracking problem for robotic manipulators. A sliding mode-based controller is designed for an n-degree-of-freedom robotic manipulator to achieve trajectory tracking control. Conventional Sliding Mode Control involves a reaching phase, which is the time the system takes to reach the sliding surface; during this stage, the system is vulnerable to parametric uncertainties and external disturbances. The employed sliding mode technique is called Integral Sliding Mode control and allows the system to skip the reaching phase, thus making the system invulnerable to disturbances from the beginning. Additionally, a simple, easy-to-implement disturbance estimator is designed in order to smooth out the control signal. Numerical simulations of the controller implemented for a 2 DOF robotic manipulator support the performance of the proposed controller.

¿Cómo citar?
Valenzuela Hanon, V., Rascón Carmona, R., Moreno Valenzuela, E., Rios Valenzuela, E., Zepeda Valencia, I. & Moreno Ahedo, L. (2025). Integral Sliding Mode Control for an n-DOF Robot Manipulator with Disturbance Estimator. Memorias del Congreso Nacional de Control Automático 2025, pp. 233-237. https://doi.org/10.58571/CNCA.AMCA.2025.040
Palabras clave
Mechatronics, Robotics, Integral Sliding Mode Control, Disturbance Estimator, Trajectory Tracking.
Referencias
- Afifa, R., Ali, S., Pervaiz, M., and Iqbal, J. (2023). Adaptive backstepping integral sliding mode control of a mimo separately excited dc motor. Robotics, 12(4), 105.
- Alizadeh, M., Samaei, M.H., Vahid Estakhri, M., Momeni, H., and Beheshti, M.T. (2024). Robust trajectory tracking of a 3-dof robotic arm using a super-twisting fast finite time non-singular terminal sliding mode control in the presence of perturbations. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 238(7), 1285–1295.
- Azeez, M.I., Abdelhaleem, A., Elnaggar, S., Moustafa, K.A., and Atia, K.R. (2023). Optimized sliding mode controller for trajectory tracking of flexible joints threelink manipulator with noise in input and output. Scientific reports, 13(1), 12518.
- Chávez-Vázquez, S., Lavín-Delgado, J.E., Gómez-Aguilar, J.F., Razo-Hernández, J.R., Etemad, S., and Rezapour, S. (2023).
- Trajectory tracking of stanford robot manipulator by fractional-order sliding mode control. Applied Mathematical Modelling, 120, 436–462.
- Green, A. and Sasiadek, J.Z. (2004). Dynamics and trajectory tracking control of a two-link robot manipulator. Journal of Vibration and Control, 10(10), 1415–1440.
- Hu, S., Wan, Y., and Liang, X. (2025). Adaptive nonsingular fast terminal sliding mode trajectory tracking control for robotic manipulators with model feedforward compensation. Nonlinear Dynamics, 113(13), 16893–16911.
- Kelly, R. and Santibáñez, V. (2003). Control de movimiento de robots manipuladores. Automática robótica. Pearson Educación.
- Levant, A. (1998). Robust exact differentiation via sliding mode technique. automatica, 34(3), 379–384.
- Manzanilla, A., Ibarra, E., Salazar, S., Zamora, A.E., Lozano, R., and Munoz, F. (2021). Super-twisting integral sliding mode control for trajectory tracking of an unmanned underwater vehicle. Ocean Engineering, 234, 109164.
- Mohammed, R.H., Elnaghi, B.E., Bendary, F.A., and Elserfi, K. (2018). Trajectory tracking control and robustness analysis of a robotic manipulator using advanced control techniques. Int. J. Eng. Manuf.(IJEM), 8(6), 42–54.
- Sahu, V.S.D.M., Samal, P., and Panigrahi, C.K. (2022). Modelling, and control techniques of robotic manipulators: A review. Materials Today: Proceedings, 56, 2758–2766.
- Spong, M.W. and Vidyasagar, M. (2008). Robot dynamics and control. John Wiley & Sons.
- Truong, T.N., Vo, A.T., and Kang, H.J. (2021). A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators. IEEE Access, 9, 31921–31931.
- Tseng, M.L. and Chen, M.S. (2010). Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian Journal of control, 12(3), 392–398.
- Tuyen, T.T., Yang, J., Liao, L., and Zhou, J. (2025). Integrated sliding mode control for permanent magnet synchronous motor drives based on second-order disturbance observer and low-pass filter. Electronics (2079- 9292), 14(7).
- Utkin, V. and Lee, H. (2006). Chattering problem in sliding mode control systems. In International Workshop on Variable Structure Systems, 2006. VSS’06., 346–350. IEEE.
- Visioli, A. and Legnani, G. (2002). On the trajectory tracking control of industrial scara robot manipulators. IEEE transactions on industrial electronics, 49(1), 224–232.
- Zhang, X. and Shi, R. (2022). Novel fast fixed-time sliding mode trajectory tracking control for manipulator. Chaos, Solitons & Fractals, 162, 112469.
