| Angel David Núñnez-Paredes | Universidad Nacional Autónoma de México |
| Rut Lay Abad-Rodríguez | Universidad Nacional Autónoma de México |
| Roberto G. Ramírez-Chavarría | Universidad Nacional Autónoma de México |
| Lizeth Torres | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2025.051
Resumen: This work addresses the dynamic inverse problem of estimating the temperature distribution in a one-dimensional bar from noisy observations at one of its ends. The model is based on the heat equation with Neumann boundary conditions, which is discretized spatially and temporally. A Kalman filter is then implemented to track the thermal evolution of the system. The results show that, even with partial information and noise, it is possible to efficiently reconstruct the internal thermal state. This technique is of interest in systems where direct access to all states is not feasible, as well as in thermal monitoring and real-time control applications.

¿Cómo citar?
Núñnez-Paredes, A., Abad-Rodríguez, R., Ramírez-Chavarría, R. & Torres, L. (2025). State-Estimation as a Virtual Sensing Scheme in a Heat Conduction Experiment. Memorias del Congreso Nacional de Control Automático 2025, pp. 296-301. https://doi.org/10.58571/CNCA.AMCA.2025.051
Palabras clave
Modeling for Control Optimization, Parameter and State Estimation.
Referencias
- Bai, Y., Chen, W., Chen, J., and Guo, W. (2020). Deep learning methods for solving linear inverse problems: Research directions and paradigms. Signal Processing, 177, 107729.
- Banks, H.T. and Kunisch, K. (1989). Estimation techniques for distributed parameter systems. Springer Science & Business Media.
Castro-Toscano, M.J., nonez, J.C.R.Q., Hern´andez-Balbuena, D., Rivas-Lopez, M., Sergiyenko, O., and Flores-Fuentes, W. (2018). - Obtención de trayectorias empleando el marco strapdown ins/kf: Propuesta metodológica. Revista Iberoamericana de Automática e Informática industrial, 15(4), 391–403.
- González, H.M., Pereira, Y.H., Piloto, A.B.S., and Quan, A.L. (2015). Modelación de perfil de humedad de suelos empleando un filtro de kalman de monte-carlo. Revista Ciencias Técnicas Agropecuarias, 24(2), 31–37.
- Haberman, R. (2012). Applied Partial Differential Equations with Fourier Series and Boundary Value Problems. Pearson, Boston, 5 edition. Pages 14–17.
- Incropera, F.P. and DeWitt, D.P. (1999). Fundamentos de transferencia de calor. Pearson Educación.
- Ivanchov, M., Lorenzi, A., and Saldina, N. (2008). Solving a scalar degenerate multidimensional identification problem in a banach space. Journal TBD.
- Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering, 82(1), 35–45.La
- w, K.J.H., Stuart, A.M., and Zygalakis, K.C. (2015). Data Assimilation: A Mathematical Introduction. Springer, Cham.
- LeVeque, R.J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia. Pages 14–15.
- Martínez, L.P. (2021). Estudio de algunas ecuaciones en derivadas parciales utilizadas para describir la difusión de partículas. Trabajo inédito.
- Morton, K.W. and Mayers, D.F. (2005). Numerical solution of partial differential equations: an introduction. Cambridge University Press.
- Qi, H., Wen, S., Wang, Y.F., Ren, Y.T., Wei, L.Y., and Ruan, L.M. (2019). Real-time reconstruction of the time-dependent heat flux and temperature distribution in participating media by using the kalman filtering technique. Applied Thermal Engineering, 157, 113667.
- Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons.
- Smith, G.D. (1985). Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, 3 edition.
- Young, P.C. (2011). Recursive least squares estimation. In Recursive Estimation and Time-Series Analysis, chapter 3. Springer.
