| Luis Cervantes-Pérez | Tecnológico Nacional de México |
| Víctor Santibáñez | Tecnológico Nacional de México |
| Jesús Sandoval | Tecnológico Nacional de México |
https://doi.org/10.58571/CNCA.AMCA.2025.003
Resumen: This work addresses the synchronization of chaotic Hamiltonian mechanical systems via an energy shaping-based control methodology within a master-slave configuration. The proposed control scheme ensures global exponential stability (GES) of the state-space origin of the closed-loop system. Specifically, two representative chaotic systems -the Hénon-Heiles system and the double pendulum- are employed as two examples for illustration. The effectiveness of the control laws is demonstrated through numerical simulations.
¿Cómo citar?
Cervantes-Pérez, L., Santibáñez, V. & Sandoval, J. (2025). Chaos synchronization via an energy-shaping approach. Memorias del Congreso Nacional de Control Automático 2025, pp. 13-19. https://doi.org/10.58571/CNCA.AMCA.2025.003
Palabras clave
Chaos, synchronization, energy-shaping.
Referencias
- Barreira, L. (2017). Lyapunov exponents, volume 1002. Springer.
- Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., and Zhou, C. (2002). The synchronization of chaotic systems. Physics reports, 366(1-2), 1-101.
- Danos, M. (1998). Fractals and chaos in geology and geophysics.
- Devaney, R. (1989). An Introduction to Chaotic Dynamical Systems. Addison{Wesley Publishing.
- Grassberger, P. and Procaccia, I. (1983). Characterization of strange attractors. Physical review letters, 50(5), 346.
- Kelly, R., Sandoval, J., and Santib_a~nez, V. (2021). A guas joint position tracking controller of torque-driven robot manipulators inuenced by dynamic dahl friction: Theory and experiments. IEEE Transactions on Control Systems Technology, 29(5), 1877-1890.
- Khalil, H.K. (2002). Nonlinear systems, volume 3. Prentice hall Upper Saddle River, NJ.
- Lorenz, E. (1963). Deterministic nonperiodic ow. Journal of the Atmospheric Sciences, 130-141.
- Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., and Heagy, J.F. (1997). Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos: An Interdisciplinary Journal of Nonlinear Science, 7(4), 520-543.
- Sandoval, J., Kelly, R., and Santibáñez, V. (2022). Sobre el control por moldeo de energía más inyección de amortiguamiento de sistemas mecánicos. Revista Iberoamericana de Automática e Informática industrial, 19(4), 407-418.
- Shevchenko, I.I. and Melnikov, A.V. (2003). Lyapunov exponents in the h_enon-heiles problem. Journal of Experimental and Theoretical Physics Letters, 77, 642-646.
- Shinbrot, T., Grebogi, C., Wisdom, J., and Yorke, J.A. (1992). Chaos in a double pendulum. American Journal of Physics, 60(6), 491-499.
- Tan, X., Zhang, J., and Yang, Y. (2003). Synchronizing chaotic systems using backstepping design. Chaos, Solitons & Fractals, 16(1), 37-45.
- Vaseghi, B., Mobayen, S., Hashemi, S.S., and Fekih, A. (2021). Fast reaching _nite time synchronization approach for chaotic systems with application in medical image encryption. Ieee Access, 9, 25911-25925.
- Vaseghi, B., Pourmina, M.A., and Mobayen, S. (2018). Finite-time chaos synchronization and its application in wireless sensor networks. Transactions of the Institute of Measurement and Control, 40(13), 3788-3799.
- West, B.J. (2012). Fractal physiology and chaos in medicine, volume 16. World Scientific.
- Wu, L., Wang, D., Zhang, C., and Mohammadzadeh, A. (2022). Chaotic synchronization in mobile robots. Mathematics, 10(23), 4568.
- Xie, Q., Chen, G., and Bollt, E.M. (2002). Hybrid chaos synchronization and its application in information processing. Mathematical and Computer Modelling, 35(1-2), 145-163.
- Yan, J.J., Hung, M.L., Chiang, T.Y., and Yang, Y.S. (2006). Robust synchronization of chaotic systems via adaptive sliding mode control. Physics letters A, 356(3), 220-225.
- Yorke, J.A. and Yorke, E. (2005). Chaotic behavior and uid dynamics. Hydrodynamic Instabilities and the Transition to Turbulence, 77-95.
- Zeebe, R.E. and Lourens, L.J. (2019). Solar system chaos and the paleocene{eocene boundary age constrained by geology and astronomy. Science, 365(6456), 926-929.

