| Dunea L. Aguilar-Bravo | Cinvestav |
| Rodolfo Reyes-Báez | ASML |
| Alejandro Rodriguez-Angeles | Cinvestav |
https://doi.org/10.58571/CNCA.AMCA.2025.030
Resumen: This paper presents the design and control of a single-axis positioning system for 3D printing applications. The system must achieve high-precision motion in a robust manner while meeting the demand for high production rates. To this end, precision engineering concepts of long-stroke and short-stroke motion are combined: the former enables positioning with millimeter-level accuracy, while the latter achieves micrometer-level precision. The system dynamics is modeled using modal decoupling and the Finite Element (FE) method. A servocontrol scheme based on Active Disturbance Rejection Control (ADRC) is proposed, and its performance is evaluated through both time-domain simulations and frequency-domain analysis. The proposed controller is compared with the traditional Loop-Shaping approach in simulation.

¿Cómo citar?
Aguilar-Bravo, D., Reyes-Báez, R. & Rodriguez-Angeles, A. (2025). Design and control of a high-precision single-axis translational mechatronic system. Memorias del Congreso Nacional de Control Automático 2025, pp. 173-178. https://doi.org/10.58571/CNCA.AMCA.2025.030
Palabras clave
Servo-control, motion control, ADRC, loop-shaping, mechatronics.
Referencias
- S. Kiranlal, V. M. Brathikan, B. Anandh, et al., A Review on Electrical and Electronics Part of 3D
Printer, IOP Conference Series: Materials Science and Engineering, vol. 1246, no. 1, p. 012033, 2022. doi: 10.1088/1757-899X/1246/1/012033 - N. G. Dagalakis and D. Tsai, High Precision Linear Positioning Using Dual Stage Actuation, Precision Engineering, vol. 32, no. 3, pp. 195–206, 2008. doi:10.1016/j.precisioneng.2007.07.003
- Gert Witvoet, Frequency Response Measurements, Lecture Slides, University of Technology Eindhoven, September 2020. https://pure.tue.nl/ws/portalfiles/portal/169411053/Slides4_Frequency_Response_Measurements.pdf
- H. Sira-Ramírez, B. Gomez-León, M. A. Aguilar-Orduña, and E. W. Zurita-Bustamante, “Equivalence between Reduced Order Extended State Observer based Active Disturbance Rejection Control and Disturbance Observers Based control schemes,” in Proc. IEEE Conf. on Control Technology and Applications (CCTA), San Diego, CA, USA, Aug. 2021, doi:10.1109/CCTA48906.2021.9658779.
- M. Fliess, J. L´evine, P. Martin, and P. Rouchon, ”From flatness, GPI observers, GPI control and flat filters to observer-based ADRC,” *European Journal of Control*, vol. 16, pp. 249–260, 2018. Published online: Nov. 9, 2018.
- Katsuhiko Ogata, Ingeniería de Control Moderno, 3ª edición, Prentice Hall, México, 1998.
- T. Oomen, Learning for Advanced Motion Control. Eindhoven University of Technology, 2020.
- T. Oomen and M. Steinbuch, “Model-based control for high-tech mechatronic systems,” in M. Indri and R. Oboe (Eds.), Mechatronics and Robotics: New Trends and Challenges, CRC Press, 2020, pp. 1–30.
- H. Butler, “Position Control in Lithographic Equipment – An Enabler for Current-Day Chip Manufacturing,” IEEE Control Systems Magazine, vol. 31, no. 5, pp. 28–47, Oct. 2011.
- T. Oomen, ”Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems,” *IEEJ Journal of Industry Applications*, vol. 7, no. 2, pp. 127–140, 2018. doi:10.1541/ieejjia.7.127.
- Rob Munnig Schmidt, Georg Schitter, and Jan van Eijk. The Design of High Performance Mechatronics. Delft University Press, Delft, The Netherlands, 2011.
- Andrew J. Fleming and Kam K. Leang. Design, Modeling and Control of Nanopositioning Systems. Springer, 2014.
- Wodek K. Gawronski. Advanced Structural Dynamics and Active Control of Structures. Springer, New York, NY, USA, 2004.
