| Dunea L. Aguilar-Bravo | Cinvestav |
| Rodolfo Reyes-Báez | ASML |
| Alejandro Rodriguez-Angeles | Cinvestav |
https://doi.org/10.58571/CNCA.AMCA.2025.056
Resumen: This paper presents the design and control of a single-axis positioning system for 3D printing applications. The system must achieve high-precision motion in a robust manner while meeting the demand for high production rates. To this end, precision engineering concepts of long-stroke and short-stroke motion are combined: the former enables positioning with millimeter-level accuracy, while the latter achieves micrometer-level precision. The system dynamics is modeled using modal decoupling and the Finite Element (FE) method. A servocontrol scheme based on Active Disturbance Rejection Control (ADRC) is proposed, and its performance is evaluated through both time-domain simulations and frequency-domain analysis. The proposed controller is compared with the traditional Loop-Shaping approach in simulation.
¿Cómo citar?
Aguilar-Bravo, D., Reyes-Báez, R. & Rodriguez-Angeles, A. (2025). Enhanced Accuracy of Adaptive Observers via the Heavy–Ball Method. Memorias del Congreso Nacional de Control Automático 2025, pp. 325-330. https://doi.org/10.58571/CNCA.AMCA.2025.056
Palabras clave
Adaptive Observers, Parameter Identification, State Estimation.
Referencias
- Annaswammy, A. and Fradkov, A. (2021). A historical perspective of adaptive control and learning. Annual Reviews in Control, 52, 18–41.
- Efimov, D., Edwards, C., and Zolghadri, A. (2016). Enhancement of adaptive observer robustness applying sliding mode techniques. Automatica, 72, 53–56.
- Efimov, D. and Fradkov, A. (2015). Design of impulsive adaptive observers for improvement of persistency of excitation. International Journal of Adaptive Control and Signal Processing, 29(6), 765–782.
- Farza, M., M’Saad, M., Ménard, T., Ltaief, A., and Maatoug, T. (2018). Adaptive observer design for a class of nonlinear systems: Application to speed sensorless induction motor. Automatica, 90, 239–247.
- Franco, R., R´ıos, H., Efimov, D., and Perruquetti, W. (2021). Adaptive estimation for uncertain nonlinear systems with measurement noise: A sliding–mode observer approach. International Journal of Robust and Nonlinear Control, 31, 3809–3826.
- Isermann, R. and M¨unchhof, M. (2011). Identification of Dynamic Systems, An Introduction with Applications. Springer-Verlag, Berlin, 1st edition.
- Katiyar, A., Roy, S., and Bhasin, S. (2023). Initialexcitation-based robust adaptive observer for MIMO LTI systems. IEEE Transactions on Automatic Control, 68(4), 2536–2543.
- Khalil, H. (2002). Nonlinear Systems. Prentice Hall, New Jersey, U.S.A.
- Liu, T., Zhang, Z., Liu, F., and Buss, M. (2024). Adaptive observer for a class of systems with switched unknown parameters using DREM. IEEE Transactions on Automatic Control, 69(4), 2445–2452.
- Narendra, K. and Annaswamy, A. (2005). Stable Adaptive Systems. Dover Publications, Mineola, NY. Polyak, B. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1–17.
- Pyrkin, A., Bobtsov, A., Ortega, R., Vedyakov, A., and Aranovskiy, S. (2019). Adaptive state observers using dynamic regressor extension and mixing. Systems & Control Letters, 133, 104519.
- Ríos, H., Efimov, D., and Perruquetti, W. (2018). An adaptive sliding-mode observer for a class of uncertain nonlinear systems. International Journal of Adaptive Control and Signal Processing, 32, 511–527.
- Ríos, H., Ferreira de Loza, A., Efimov, D., and Franco, R. (2023). An LMI–based robust nonlinear adaptive observer for disturbed regression models. IEEE Transactions on Automatic Control, 68(1), 408–415.
- Sontag, E.D. and Wang, Y. (1999). Notions of input to output stability. Systems & Control Letters, 38(4), 235–248.
- Tomei, P. and Marino, R. (2023). An enhanced feedback adaptive observer for nonlinear systems with lack of persistency of excitation. IEEE Transactions on Automatic Control, 68(8), 5067–5072.
- Zhang, Q. (2002). Adaptive observer for multiple-inputmultiple-output (MIMO) linear time varying systems. IEEE Transactions on Automatic Control, 47(3), 525–529.

