Velázquez Zaldo, César Antonio | Inst. Tecnológico De Sonora |
Gamez, Manuel | ITSON |
Penaloza, Ollin | Inst. Tecnológico De Sonora |
Resumen: Varios esquemas de control para turbinas eólicas de velocidad variable dependen de algunos parámetros o señales que son difíciles de conocer, medir o estimar en la práctica, como los parámetros de la turbina, la velocidad del viento, el par aerodinámico y la aceleración del rotor. En este trabajo, se diseña un control de par para turbinas eólicas de velocidad variable mediante la técnica de filtrado plano. La propuesta permite controlar la potencia de salida de la turbina solo con la velocidad del rotor y la potencia deseada. La efectividad del controlador se ilustra mediante simulaciones numéricas con el código FAST para turbinas eólicas.
¿Cómo citar?
César Velázquez, Manuel Gámez & Ollin Peñaloza. Control de potencia de una turbina eólica de velocidad variable vía filtrado plano. Memorias del Congreso Nacional de Control Automático, pp. 43-48, 2018.
Palabras clave
Turbinas eólicas, control de potencia, filtrado plano
Referencias
- Ahmed, W. (2013). Mechanical modelling of wind turbine: comparative study. International Journal of Renewable Energy Research, 3(1), 94–97.
- Asl, H.J. and Yoon, J. (2016a). Power capture optimization of variable-speed wind turbines using an output feedback controller. Renewable Energy, 86, 517–525.
- Asl, H. and Yoon, J. (2016b). Adaptive control of variable-speed wind turbines for power capture optimisation. Transactions of the Institute of Measurement and Control, 39(11), 1663–1672.
- Baaloch, M., Wang, J., and Kaloi, G. (2016). A review of the state of the art control techniques for wind energy conversion system. International Journal of Renewable Energy Research, 6(4), 1276–1295.
- Beltran, B., Ahmed-Ali, T., and Benbouzid, M.E.H. (2008). Sliding mode power control of variable-speed wind energy conversion systems. IEEE Transactions on Energy Conversion, 23(2), 551–558.
- Beltran, B., Ahmed-Ali, T., and Benbouzid, M.E.H. (2009). High-order sliding-mode control of variablespeed wind turbines. IEEE Transactions on Industrial Electronics, 56(9), 3314–3321.
- Boukhezzar, B. and Siguerdidjane, H. (2010). Comparison between linear and nonlinear control strategies for variable speed wind turbines. Control Engineering Practice, 18, 1357–1368.
- Boukhezzar, B. and Siguerdidjane, H. (2005). Nonlinear control of variable speed wind turbines for power regulation. In Proc. of the IEEE Conference on Control Applications, 114–119. Toronto, Canada.
- Coronado, A., Gámez, M., and Peñaloza, O. (2017). Adaptive control of variable-speed variable-pitch wind turbines for power regulation. In IEEE Int. Conf. on Renewable Energy Research and Applications, ICRERA 2017, 479–483.
- Divone, L.V. (2009). Evolution of modern wind turbines part a: 1940 to 1994. In Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, Second Edition. ASME Press.
- Fliess, M., Levine, J., Martin, P., and Rouchon, P. (1995). Flatness and defect of non-linear systems: introductory theory and examples. International Journal of Control, 61(6), 1327–1361.
- Jonkman, J. (2018). NWTC information portal (FAST). https://nwtc.nrel.gov/FAST. Last modified 04-January-2018; accessed 15-April-2018.
- Joo, Y.J. and Back, J.H. (2012). Power regulation of variable speed wind turbines using pitch control based on disturbance observer. Journal of Electrical Engineering and Technology, 7(2), 273–280.
- Kesraoui, M., Krichi, N., and Belkadi, A. (2011). Maximum power point tracker of wind energy conversion system. Renewable Energy, 36, 2655–2662.
- Martin, P., Murray, R., and Rouchon, P. (2003). Flat systems, equivalence and trajectory generation. CDS Technical Report.
- Meng, W., Yang, Q., and Sun, Y. (2014). Adaptive control of variable-speed wind energy conversion systems with inaccurate wind speed measurement. Transactions of the Institute of Measurement and Control, 37(1), 63–72.
- Pozo, F., Vidal, Y., Acho, L., Luo, N., and Zapateiro, M. (2013). Power regulation of wind turbines using torque and pitch control. In Proc. of the American Control Conference (ACC), 6486–6491. Washington, D.C., USA.
- Rajendran, S. and Jena, D. (2014). Control of variable speed variable pitch wind turbine at above and below rated wind speed. Journal of Wind Energy, 2014(Article ID 709128), 14.
- Rigatos, G. (2015). Nonlinear control and filtering using differential flatness approaches: applications to electromechanical systems. Springer.
- Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M., and Garrido-Moctezuma, R. (2016). Flat filtering: A classical approach to robust control of nonlinear systems. In Proc. of the American Control Conference (ACC), 3844–3849.
- Song, Y., Dhinakaran, B., and Bao, X. (2000). Variable speed control of wind turbines using nonlinear and adaptive algorithms. Journal of Wind Engineering and Industrial Aerodynamics, 85(3), 293–308.
- Soriano, L., Yu, W., and Rubio, J. (2013). Modeling and control of wind turbine. Mathematical Problems in Engineering, 2013(Article ID: 982597), 13.
- Soufi, Y., Kahla, S., Sedraoui, M., and Bechouat, M. (2016). Optimal control based rst controller for maximum power point tracking of wind energy conversion system. In Proc. of the IEEE Int. Conf. on Renewable Energy Research and Applications, 1168–1172. Birmingham, U.K.
- Thongman, J. and Ouhrouche, M. (2011). Mppt control methods in wind energy conversion systems. In R. Carriveau (ed.), Fundamental and advanced topics in wind power. InTech.
- Vidal, Y., Acho, L., Luo, N., Zapateiro, M., and Pozo, F. (2012). Power control design for variable-speed wind turbines. Energies, 5(8), 3033–3050.