Evert Josué Guajardo Benavides | Universidad Autonoma de Nuevo Leon |
Efraín Alcorta-García | Universidad Autonoma de Nuevo Leon |
Resumen: The tracking control for port-controlled Hamiltonian(PCH) systems still represents a control challenge, even despite various results available in the literature. In this paper a canonical transformation available in the literature is used in order to transfer and/or to obtain controllers which solve the tracking problem in port-Hamiltonian systems and preserve the PCH structure either. The corresponding results are shown for three controllers. The considered procedure allows to transfer some existing results from Euler-Lagrange structure to the port-Hamiltonian ones, establishing clearly the requirements. A two degrees of freedom robot model is used in order to show and discuss the results obtained.

¿Cómo citar?
Evert Josué Guajardo Benavides & Efraín Alcorta-García. A development framework for tracking control in Hamiltonian systems. Memorias del Congreso Nacional de Control Automático, pp. 1-6, 2020.
Palabras clave
Tracking control, generalized canonical transformations, PCH systems
Referencias
- Dirksz, D. and Scherpen, J.M.A. (2012). Structure preserving adaptive control of port-hamiltonian systems. IEEE Transactions on Automatic Control, 57(11), 2880–2885.
- Donaire, A., Perez, T., and Bartlett, N. (2014). Tracking control of a class of hamiltonian mechanical systems with disturbances. In Proceedings of Australasian Conference on Robotics and Automation. Australian Robotics & Automation Association ARAA.
- Donaire, A. and Junco, S. (2009). On the addition of integral action to port-controlled hamiltonian systems. Automatica, 45(8), 1910–1916.
- Fujimoto, K., Sakurama, K., and Sugie, T. (2003). Trajectory tracking control of port-controlled hamiltonian systems via generalized canonical transformations. Automatica, 39(12), 2059–2069.
- Fujimoto, K. and Sugie, T. (2000). Time-varying stabilization of hamiltonian systems via generalized canonical transformations. IFAC Proceedings Volumes, 33(2), 63–68.
- Kelly, R., Santibáñez, V., and Loría, A. (2005). Control of robot manipulators in joint space. Springer.
- Kelly, R. y Santibáñez, V. (2003). Control de movimiento de robots manipuladores. Pearson Educación, S.A., Madrid, first edition.
- Maschke, B.M. and van der Schaft, A.J. (1992). Portcontrolled hamiltonian systems: modelling origins and systemtheoretic properties. IFAC Proceedings Volumes, 25(13), 359–365.
- Mulero-Martínez, J.I. (2008). Canonical transformations used to derive robot control laws from a port-controlled hamiltonian system perspective. Automatica, 44(9), 2435–2440.
- Ortega, R., Loria, A., Nicklasson, P.J., and Sira Ramirez, H. (1998). Passivity based Control of Euler Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. Springer.
- Ortega, R., Van Der Schaft, A., Maschke, B., and Escobar, G. (2002). Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems. Automatica, 38(4), 585–596.
- Reyes-Baez, R., der Schaft, V., and Jayawardhana, B. (2017). Tracking control of fully actuated porthamiltonian mechanical systems via sliding manifolds and contraction analysis. In IFAC PapersOnLine 50-1, 50-1, 8256–8261.
- Reyes-Baez, R., van der Schaft, A., and Jayawardhana, B. (2020). A family of virtual contraction based controllers for tracking of flexible-joints port-hamiltonian robots: theory and experiments. Int. J. of Robust and Nonlinear Control, 1–27.
- Romero, J.G., Ortega, R., and Sarras, I. (2015). A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Transactions on Automatic Control, 60(3), 818–823.
- Yaghmeaei, A. and Yazdanpanah, M.J. (2017). Trajectory tracking for a class of contractive port hamiltonian systems. Automatica.