Agustín Sánchez-Contreras | Universidad Nacional Autónoma de México |
Oscar Miguel Rodríguez-Benítez | Universidad Nacional Autónoma de México |
Isaac Ortega-Velázquez | Universidad Nacional Autónoma de México |
Gerardo Espinosa-Pérez | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2022.047
Resumen: The main contribution of this paper is to increase the operating range of quasi-resonant DC-DC converters through the implementation of a PI controller, considering the relationship between the duty cycle and switching frequency. Quasi-resonant converters use a soft switching method where the power devices switch at zero voltage or zero current, resulting in low switching loss and high power density. The controller design is carried out by applying the evaluation of the power stages in the topology with the aim to ensure soft switching commutation. Simulation results are presented to illustrate the features of the proposed estimation.
¿Cómo citar?
Sánchez-Contreras, A., Rodríguez-Benítez, O., Ortega-Velázquez, I. & Espinosa-Pérez, G. A new implementation of PI controller for quasi-resonant converters. Memorias del Congreso Nacional de Control Automático, pp. 433-438, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.047
Palabras clave
Control de Sistemas No Lineales; Sistemas Eléctricos de Potencia; Sistemas Electrónicos de Potencia
Referencias
- Bernet, S. (2000). Recent developments of high power converters for industry and traction applications. IEEE transactions on power electronics, 15(6), 1102–1117.
- Blake, C. and Bull, C. (2001). Igbt or mosfet: choose wisely. International Rectifier, 1–5.
- Cervantes, I., Garc´ıa, D., and Noriega, D. (2003). Linear multiloop control of quasi-resonant converters. IEEE Transactions on Power Electronics, 18(5), 1194–1201.
- Hossain, M., Rahim, N., et al. (2018). Recent progress and development on power dc-dc converter topology, control, design and applications: A review. Renewable and Sustainable Energy Reviews, 81, 205–230.
- Kazimierczuk, M.K. and Czarkowski, D. (2012). Resonant power converters. John Wiley & Sons.
- Lee, F.C. (1988). High-frequency quasi-resonant converter technologies. Proceedings of the IEEE, 76(4), 377–390.
- Liu, K.H., Oruganti, R., and Lee, F.C. (1987). Quasiresonant converters-topologies and characteristics. IEEE Transactions on Power electronics, (1), 62–71.
- Lyshevski, S.E. (2000). Resonant converters: Nonlinear analysis and control. IEEE Transactions on industrial Electronics, 47(4), 751–758.
- Nejadpak, A. and Tahami, F. (2013). Stabilizing controller design for quasi-resonant converters described by a class of piecewise linear models. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(1), 312–323.
- Outeiro, M.T., Buja, G., and Czarkowski, D. (2016). Resonant power converters: An overview with multiple elements in the resonant tank network. IEEE Industrial Electronics Magazine, 10(2), 21–45.
- Pressman, A. (2009). Switching power supply design. McGraw-Hill Education.
- Rameshkumar, A. and Arumugam, S. (2012). Pi control of quasi-resonant buck converter. In International Conference on Advances in Information Technology and Mobile Communication, 477–485. Springer.
- Xu, J. and Lee, C. (1998). A unified averaging technique for the modeling of quasi-resonant converters. IEEE Transactions on Power Electronics, 13(3), 556–563