Rojas-Ricca, Bryan | CINVESTAV |
Garrido, Rubén | CINVESTAV |
Mondie, Sabine | CINVESTAV |
https://doi.org/10.58571/CNCA.AMCA.2024.092
Resumen: This paper introduces an open-source Python software that achieves a high performance for the sampled period, despite running on a general-purpose operating system instead of a real-time operating system. The software is designed to implement control systems and experiment with physical platforms, particularly the Quanser Qube-Servo 2. This article describes the coding design, numerical methods, modeling, and identification of the Qube-Servo 2, the control design, and its implementation. Finally, a quick guide to downloading via GitHub and installation requirements are provided.
¿Cómo citar?
Rojas Ricca, B., Garrido, R. & Mondie, S. (2024). A Python-Based Open-Source Software for Real-Time Control Systems. Memorias del Congreso Nacional de Control Automático 2024, pp. 542-547. https://doi.org/10.58571/CNCA.AMCA.2024.092
Palabras clave
Software for system identification, Linear systems, Real-time algorithms, scheduling, and programming
Referencias
- An, B., Liu, G., and Senchun, C. (2012). Design and implementation of real-time control system using rtai and matlab/rtw. In Proceedings of 2012 UKACC International Conference on Control, 834–839. doi: 10.1109/CONTROL.2012.6334740.
- Fadali, M.S. and Visioli, A. (2009). Digital control engineering, analysis and design. Academic Press, Boston. doi:10.1016/B978-0-12-374498-2.X0001-X.
- Hernández-Gallardo, J.A., Guel-Cortez, A.J., González Galván, E.J., Cárdenas-Galindo, J.A., Félix, L., and Méndez-Barrios, C.F. (2024). Synergistic design of optimal pi controllers for linear time-delayed systems. In M.N. Cardona, J. Baca, C. Garcia, I.G. Carrera, and C. Martinez (eds.), Advances in Automation and Robotics Research, 77–88. Springer Nature Switzerland, Cham.
- Holmes, M.H. (2007). Introduction to Numerical Methods in Differential Equations. Springer New York, New York. doi:10.1007/978-0-387-68121-4.
- Isermann, R. (2005). Identification of Dynamic Systems, 293–332. Springer London, London. doi:10.1007/1-84628-259-4 7.
Li, Y., Potkonjak, M., and Wolf, W. (1997). Real-time operating systems for embedded computing. In Proceedings International Conference on Computer Design VLSI in Computers and Processors, 388–392. doi: 10.1109/ICCD.1997.628899. - Maldonado, J., Lopez, K., Garrido, R., and Mondié, S. (2018). Implementing time-delay controllers on an educational motion control platform. In 2018 XX Congreso Mexicano de Robótica (COMRob), 1–6. doi: 10.1109/COMROB.2018.8689425.
- Morales, O.J., Maldonado, J., and Garrido, R. (2022). Robust adaptive control of servo systems. In 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. doi:10.1109/CCE56709.2022.9975932.
- Nise, N.S. (2019). Control Systems Engineering, 8th Edition. Jhon Wiley & Sons, New Jersey. Python Software Foundation (2001-2024). Python documantation. https://docs.python.org/3/.
- Quanser Inc (2024). Quanser Python API Documentation. https://docs.quanser.com/quarc/documentation/python/installation.html.
- Reck, R. (2018). Validating dc motor models on the quanser qube servo. In Dynamic Systems and Control Conference, DSCC 2018, Sep 30 –Oct 3, Atlanta, Georgia, USA. doi:10.1115/DSCC2018-9158.
- Sastry, S. and Bodson, M. (1989). Adaptive control: Stability, convergence, and robustness. Prentice-Hall, Inc., New Jersey. doi:10.1016/B978-0-12-374498-2.X0001-X.
- Seuret, A. (2012). A novel stability analysis of linear systems under asynchronous samplings. Automatica, 48(1), 177–182. doi:10.1016/j.automatica.2011.09.033.
- Sigarev, V., Kuzmina, T., and Krasilnikov, A. (2016). Real-time control system for a dc motor. In 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), 689–690. doi:10.1109/EIConRusNW.2016.7448276.