Ramos-García, Fernanda | Universidad Nacional Autónoma de México |
Espinosa-Perez, Gerardo | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2024.032
Resumen: In this work, the problem of speed tracking control for the Induction Motor (IM) is studied by implementing a Passivity Based Control (PBC) scheme for the Port Controlled Hamiltonian (PCH) mathematical model of the system. The first step of the implemented methodology is to analyze the model structure and exploit its properties to design a speed tracking control. The mathematical model used to design the speed tracking control is in the dq reference frame, where the stator electrical sinusoidal signals are transformed into constant signals. The importance of the contribution is embedded in the system inversion, as the IM has an electrical subsystem not completely actuated, which makes the control scheme implementation for the IM not a trivial result. For illustration purposes, the numerical
evaluation was done by a MATLAB Simulink simulation that shows that the designed control is able to follow variant speed references.
¿Cómo citar?
Ramos García, F. & Espinosa Perez, G. (2024). A Speed Tracking Passivity Based Control of Induction Motors. Memorias del Congreso Nacional de Control Automático 2024, pp. 185-190. https://doi.org/10.58571/CNCA.AMCA.2024.032
Palabras clave
Passivity Based Control, Speed Tracking Control, Induction Motor, Simulation
Referencias
- Aissa, O., Reffas, A., Krama, A., Benkercha, R., Talhaoui, H., and Abu-Rub, H. (2024). Advanced direct torque control based on neural tree controllers for induction motor drives. ISA Transactions, 148, 92–104. doi: 10.1016/j.isatra.2024.03.017.
- Baazouzi, K., Bensalah, A.D., and Drid, S. (2014). The PBC technical to control the induction motor. In 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 7–10. IEEE, Hammamet, Tunisia. doi: 10.1109/STA.2014.7086690.
- Batlle, C., Dòria-Cerezo, A., Espinosa-Pérez, G., and Ortega, R. (2009). Simultaneous interconnection and damping assignment passivity-based control: the induction machine case study. International Journal of Control, 82(2), 241–255. doi:10.1080/00207170802050817.
- Becherif, M. (2019). Survey on Passivity Based Control of Induction Machine. Asian Journal of Control, 21(4), 2137–2154. doi:10.1002/asjc.1957.
- Belay, A., Salau, A.O., Kassahun, H.E., and Eneh, J.N. (2024). Stator flux estimation and hybrid sliding mode torque control of an induction motor. International Journal of System Assurance Engineering and Management. doi:10.1007/s13198-024-02275-1.
- Espinosa, G. and Ortega, R. (1994). State observers are unnecessary for induction motor control. Systems & Control Letters, 23(5), 315–323. doi:10.1016/0167- 6911(94)90063-9.
- Espinosa-Pérez, G., Ortega, R., and Nicklasson, P.J. (1997). Torque and Flux Tracking of Induction Motors. International Journal of Robust and Nonlinear Control, 7(1), 1–9. doi:10.1002/(SICI)1099- 1239(199701)7:1<1::AID-RNC194>3.0.CO;2-2.
- González, H., Duarte-Mermoud, M.A., Pelissier, I., Travieso-Torres, J.C., and Ortega, R. (2008). A novel induction motor control scheme using IDA-PBC. Journal of Control Theory and Applications, 6(1), 59–68. doi:10.1007/s11768-008-7193-9.
- Krause, P.C., Wasynczuk, O., Sudhoff, S.D., and Pekarek, S. (eds.) (2013). Analysis of electric machinery and drive systems. Number 37 in IEEE Press series on power engineering. Wiley, Hoboken, NJ, 3. ed edition.
Krzeminski, Z. (1987). Nonlinear Control of Induction Motor. IFAC Proceedings Volumes, 20(5), 357–362. doi: 10.1016/S1474-6670(17)55396-3. - Lamme, B.G. (1921). The story of the induction motor. Journal of the American Institute of Electrical Engineers, 40(3), 203–223. doi: 10.1109/JoAIEE.1921.6592844.
- Marino, R., Tomei, P., and Verrelli, C.M. (2010). Induction Motor Control Design, volume 0 of Advances in Industrial Control. Springer London, London. doi: 10.1007/978-1-84996-284-1.
- Mujica, H. and Espinosa-Pérez, G. (2014). Control No Lineal Basado en Pasividad de Motores de Inducción para Alto Desempeño Dinámico. Revista Iberoamericana de Automática e Informática Industrial RIAI, 11(1), 32–43. doi:10.1016/j.riai.2013.08.001.
- Ortega, R. and Espinosa, G. (1993). Torque regulation of induction motors. Automatica, 29(3), 621–633. doi: 10.1016/0005-1098(93)90059-3.
- Ramos-García, F., Espinosa-Perez, G., and Avila-Becerril, S. (2021). On the trajectory tracking control of hamiltonian systems. Mexico.
- Singh, A.K., Dewangan, H., Venu, S., and Jain, S. (2024). Model Predictive Control for Nine Phase Induction Motor. In 2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T), 657–662. IEEE, Raipur, India. doi: 10.1109/ICPC2T60072.2024.10474940.
- Trzynadlowski, A. (2013). The Field Orientation Principle in Control of Induction Motors. Springer, New York, NY. OCLC: 1066182625.
- Yadav, A., Das, R., and Roy, G. (2024). PID-Based Nonlinear Sliding Mode Control For Speed Regulation in Induction Motors: A Comprehensive Survey and Analysis. In 2024 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 1–7. IEEE, Bhopal, India. doi: 10.1109/SCEECS61402.2024.10482307.
- Zahraoui, Yassine, Moutchou, Mohamed, Tayane, Souad, Fahassa, Chaymae, and Elbadaoui, Sara (2024). Induction Motor Performance Improvement using Super Twisting SMC and Twelve Sector DTC. International Journal of Robotics and Control Systems, 4(1), 50–68.