Guillermo Oaxaca-Adams | Universidad Autónoma Metropolitana |
Raúl Villafuerte-Segura | Universidad Autónoma del Estado de Hidalgo |
https://doi.org/10.58571/CNCA.AMCA.2022.010
Resumen: This paper presents a study on the fragility and performance of two linear controllers for second-order systems: proportional retarded control (PR) and proportional derivative control (PD). The study is carried out through an analysis of the corresponding characteristic equation of the closed-loop system. In the case of the PR control, Taylors theorem is used to show that if there exits a root of multiplicity three, it is necessarily dominant.
¿Cómo citar?
Oaxaca-Adams, G. & Villafuerte-Segura, R. A study on performance and fragility of controllers: PR and PD. Memorias del Congreso Nacional de Control Automático, pp. 31-37, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.010
Palabras clave
Control de Sistemas Lineales; Control Robusto; Control Clásico
Referencias
- Abdallah, C., Dorato, P., Benites-Read, J., and Byrne, R. (1993). Delayed positive feedback can stabilize oscillatory systems. In American Control Conference, 1993, 3106–3107. IEEE.
- Alfaro, V.M. (2007). PID controllers’ fragility. ISA transactions, 46(4), 555–559.
- Astrom, K.J. and Hagglund, T. (2001). The future of pid control. Control engineering practice, 9(11), 1163–1175.
- Berner, J., Soltesz, K., Hagglund, T., and Astrom, K.J. (2018). An experimental comparison of PID autotuners. Control Engineering Practice, 73, 124–133.
- Bleich, M.E. and Socolar, J.E. (1996). Stability of periodic orbits controlled by time-delay feedback. Physics Letters A, 210(1-2), 87–94.
- Boussaada, I., Tliba, S., Niculescu, S., Unal, H.U., and Vyhlidal, T. (2017). Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system. Linear Algebra and its Applications, 542, 589–604.
- de Sousa Vieira, M. and Lichtenberg, A. (1996). Controlling chaos using nonlinear feedback with delay. Physical Review E, 54(2), 1200.
- Gu, K., Chen, J., and Kharitonov, V. (2003). Stability of Time-Delay Systems. Control Engineering. Birkhauser Boston.
- Hernandez-Diez, J.E., Mendez-Barrios, C.F., Mondie, S., Niculescu, S.I., and Gonzalez-Galvan, E. (2018). Proportional-delayed controllers design for LTIsystems: a geometric approach. International Journal of Control, 91(4), 907–925.
- Just, W., Bernard, T., Ostheimer, M., Reibold, E., and Benner, H. (1997). Mechanism of time-delayed feedback control. Physical Review Letters, 78(2), 203.
- Kokame, H. and Mori, T. (2002). Stability preserving transition from derivative feedback to its difference counterparts. IFAC Proceedings Volumes, 35(1), 129–134.
- Mazanti, G., Boussaada, I., and Niculescu, S.I. (2020a). On qualitative properties of single-delay linear retarded differential equations: Characteristic roots of maximal multiplicity are necessarily dominant. arXiv preprint arXiv:2002.06146.
- Mazanti, G., Boussaada, I., Niculescu, S.I., and Chitour, Y. (2020b). Effects of roots of maximal multiplicity on the stability of some classes of delay differentialalgebraic systems: The lossless propagation case. arXiv preprint arXiv:2002.00078.
- Melchor-Aguilar, D. and Niculescu, S.I. (2009). Computing non-fragile PI controllers for delay models of TCP/AQM networks. International Journal of Control, 82(12), 2249–2259.
- Mendez-Barrios, C., Niculescu, S.I., Morarescu, C.I., and Gu, K. (2008). On the fragility of PI controllers for time-delay SISO systems. In 2008 16th mediterranean conference on control and automation, 529–534. IEEE.
- Mondie, S., Villafuerte, R., and Garrido, R. (2011). Tuning and noise attenuation of a second order System using Proportional Retarded control. IFAC Proceedings Volumes, 44(1), 10337–10342.
- Morarescu, C.I. and Niculescu, S. (2007). Stability crossing curves of SISO systems controlled by delayed output feedback. Dynamics Of Continuous Discrete and Impulsive Systems Series B, 14(5), 659.
- Morărescu, I.C., Mendez-Barrios, C.F., Niculescu, S.I., and Gu, K. (2011). Stability crossing boundaries and fragility characterization of PID controllers for SISO systems with I/O delays. In Proceedings of the 2011 American Control Conference, 4988–4993. IEEE.
- Neimark, J. (1949). D-decomposition of the space of quasipolynomials. Appl. Math. Mech, 13, 349–380.
- Neimark, J.I. (1973). D-decomposition of the space of quasi-polynomials (on the stability of linearized distributive systems). American Mathematical Society Translations, 102, 95–131.
- Oaxaca-Adams, G., Villafuerte-Segura, R., and Aguirre-Hernandez, B. (2021). On non-fragility of controllers for time delay systems: A numerical approach. Journal of the Franklin Institute, 358(9), 4671–4686.
- Polya, G. and Szego, G. (1998). Problems and theorems in analysis I: Series. Integral calculus. Theory of functions. Springer Science & Business Media.
- Pyragas, K. (1992). Continuous control of chaos by selfcontrolling feedback. Physics letters A, 170(6), 421–428.
- Ramirez, A., Mondie, S., Garrido, R., and Sipahi, R. (2016). Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems. IEEE Transactions on Automatic Control, 61(6), 1688–1693.
- Silva, G.J., Datta, A., and Bhattacharyya, S.P. (2005). PID controllers for time-delay systems, volume 43. Springer.
- Suh, H. and Bien, Z. (1980). Use of time-delay actions in the controller design. IEEE Transactions on Automatic Control, 25(3), 600–603.
- Suh, I. and Bien, Z. (1979). Proportional minus delay controller. IEEE Transactions on Automatic Control, 24(2), 370–372.
- Swisher, G.M. and Tenqchen, S. (1988). Design of proportional-minus-delay action feedback controllers for second-and third-order systems. In American Control Conference, 1988, 254–260. IEEE.
- Ulsoy, A.G. (2015). Time-delayed control of SISO systems for improved stability margins. Journal of Dynamic Systems, Measurement, and Control, 137(4), 041014.
- Villafuerte, R., Mondie, S., and Garrido, R. (2012). Tuning of proportional retarded controllers: theory and experiments. IEEE Transactions on Control Systems Technology, 21(3), 983–990.