Maldonado-Uriostigue, Daan Y. | Universidad Nacional Autónoma de México |
Ramírez-Chavarría, Roberto Giovanni | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2024.072
Resumen: This paper describes the creation of an educational resource focused on identifying dynamic systems, with a particular emphasis on parametric estimation, for undergraduate courses. This virtual laboratory is easily reproducible with accessible materials and software, allowing easy system modification. The Recursive Least-Squares (RLS) with a forgetting factoris a solid and efficient method that enables students to experiment with parameters and better understand the subject matter. We show three experiments to provide an exhaustive RLScomprehension. Finally, we envision the virtual laboratory as useful for educational purposes and other applications in automatic control.
¿Cómo citar?
Maldonado Uriostigue, D.Y. & Ramírez Chavarría, R.G. (2024). A Virtual Laboratory on Recursive Least-Squares Estimation for Undergraduate Courses. Memorias del Congreso Nacional de Control Automático 2024, pp. 422-427. https://doi.org/10.58571/CNCA.AMCA.2024.072
Palabras clave
Parametric Estimation, RLS algorithm, Forgetting factor, Real time, Educational tool
Referencias
- Arrufat, J.L. (1990). Mínimos cuadrados recursivos. Económica, XXXVI.
- Galrinho, M. (2016). Least Squares Methods for System Identification of Structured Models. Licentiate thesis, KTH School of Electrical Engineering, Automatic Control Lab, SE-100 44 Stockholm, Sweden.
- Islam, S.A.U. and Bernstein, D.S. (2019). Recursive least squares for real-time implementation. IEEE Control Systems Magazine.
- Johnstone, R.M., Richard Johnson, C., Bitmead, R.R., and Anderson, B.D. (1982). Exponential convergence of recursive least squares with exponential forgetting factor. Systems & Control Letters, 2(2), 77–82.
- Juang, J. (1994). Applied System Identification. PrenticeHall.
- Kamali, C., Pashilkar, A., and Raol, J. (2011). Evaluation of recursive least squares algorithm for parameter estimation in aircraft real time applications. Aerospace Science and Technology, 15(3), 165–174.
- Ljung, L. (1998). System Identification: Theory for the User. Prentice Hall PTR, Upper Saddle River, NJ, USA, second edition.
- Mora, B.P.Z. (1996). Identificación paramétrica discreta.
- Ogata, K. (2002). Sistemas de Control en Tiempo Discreto. Prentice Hall, 2nd edition.
- Pintelon, R. and Schoukens, J. (2012). System Identification: A Frequency Domain Approach. IEE Press. John Wiley & Sons, Inc., second edition.
- Ramírez-Chavarría, R.G., Müller, M.I., Mattila, R., Quintana-Carapia, G., and Sánchez-Pérez, C. (2019). A framework for high-resolution frequency response measurement and parameter estimation in microscale impedance applications. Measurement, 148, 106913.
- Söderström, T. and Stoica, P. (1989). System Identification. Prentice Hall.
- Sun, F. and Xiong, R. (2015). A novel dual-scale cell state-of-charge estimation approach for seriesconnected battery pack used in electric vehicles. Journal of Power Sources, 274, 582–594.
- Verhaegen, M. and Verdult, V. (2007). Filtering and System Identification: A Least-Squares Approach. Cambridge University Press.