Andrés E. Sánchez-Calvo | Tecnológico de Monterrey |
V. Sebastián Martinez-Perez | Tecnológico de Monterrey |
Alejandro González-García | Tecnológico de Monterrey |
Hermán Castañeda | Tecnológico de Monterrey |
https://doi.org/10.58571/CNCA.AMCA.2022.091
Resumen: This article addresses robust guidance and control for a fully-actuated underwater autonomous vehicle under external perturbations. A cascade strategy based on an adaptive integral terminal sliding mode controller is designed. Such approach ensures practical finitetime convergence of the tracking errors and robustness against disturbances with unknown boundaries. In addition, it does not overestimate the control gain, reducing chattering. The guidance law forces the vehicle to track desired trajectories, providing velocity and heading references for all degrees of freedom. Then, a low-level control ensures convergence of all the state variables. Finally, simulations results carried on a full model subject to water currents prove the feasibility and advantages of the proposed control scheme.
¿Cómo citar?
Sanchez-Calvo, Andres E., Sebastian Martinez-Perez, V., Gonzalez-Garcia, A. & Castañeda, H. Adaptive Integral Terminal Sliding Mode Guidance and Control for a UUV Under Perturbations. Memorias del Congreso Nacional de Control Automático, pp. 175-180, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.091
Palabras clave
Unmanned underwater vehicles, Guidance-Control, finite-time convergence, adaptive integral terminal sliding mode control, robust control
Referencias
- Acharya, R.Y., Charlot, N.F., Alam, M.M., Ganji, F., Gauthier, D., and Forte, D. (2021). Chaogate parameter optimization using bayesian optimization and genetic algorithm. In 2021 22nd International Symposium on Quality Electronic Design (ISQED), 426–431. doi:10.1109/ISQED51717.2021.9424355.
- Ashokkumar, P., Aravindh, M.S., Venkatesan, A., and Lakshmanan, M. (2021). Realization of all logic gates and memory latch in the SCCNN cell of the simple nonlinear MLC circuit. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(6). doi:10.1063/5.0046968. URL https://doi.org/10.1063 %2F5.0046968.
- Behnia, S., Pazhotan, Z., Ezzati, N., and Akhshani, A. (2014). Reconfigurable chaotic logic gates based on novel chaotic circuit. Chaos, Solitons Fractals, 69, 74–80. doi:https://doi.org/10.1016/j.chaos.2014.08.011.
- Breyer, E.T., Mulaosmanovic, H., Mikolajick, T., and Slesazeck, S. (2017). Reconfigurable nand/nor logic gates in 28 nm hkmg and 22 nm fd-soi fefet technology. In 2017 IEEE International Electron Devices Meeting (IEDM), 28.5.1–28.5.4. doi: 10.1109/IEDM.2017.8268471.
- Camps, O., Stavrinides, S.G., and Picos, R. (2021). Stochastic computing implementation of chaotic systems. Mathematics, 9(4). doi:10.3390/math9040375. URL https://www.mdpi.com/2227-7390/9/4/375.
- Charlot, N.F. and Gauthier, D.J. (2022). Sensitivity of a chaotic logic gate. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(7), 3339–3343. doi: 10.1109/TCSII.2022.3170266.
- Kia, B., Lindner, J.F., and Ditto, W.L. (2016). A simple nonlinear circuit contains an infinite number of functions. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(10), 944–948. doi: 10.1109/TCSII.2016.2538358.
- Kia Behnam, L.J.F. and L., D.W. (2017). Nonlinear dynamics as an engine of computation. Trans. R. Soc.
- A, 375. doi:https://doi.org/10.1098/rsta.2016.0222.
- Kohar, V., Kia, B., Lindner, J.F., and Ditto, W.L. (2017). Implementing boolean functions in hybrid digital- analog systems. Rev. Appl., 7, 044006. doi:10.1103/PhysRevApplied.7.044006.
- Malik, G.F.A., Kharadi, M.A., and Khanday, F.A. (2019). Electrically reconfigurable logic design using multi-gate spin field effect transistors. Microelectronics Journal, 90, 278–284. doi: https://doi.org/10.1016/j.mejo.2019.07.003.
- Shalf, J. (2020). The future of computing beyond moore’s law. Trans. R. Soc. A, 378. doi:http://doi.org/10.1098/rsta.2019.0061.