Gonzalez-Olvera, Marcos A. | Universidad Autónoma De La Ciudad De México |
Flores Perez, Anahi | Universidad Autónoma De La Ciudad De México |
Torres, Lizeth | Universidad Autónoma De La Ciudad De México |
Resumen: In this work it is presented an adaptive observer design methodology for the Fractional-Order Hindmarsh-Rose Neuron Model. Using an analysis based on quadratic Lyapunov functions and an extension of Barbalat's theorem to the fractional-order case, the asymptotic convergence of the observed states to the real ones is proven, as well as the boundedness of the parameter reconstruction. Numeric examples are presented to show the effectiveness of the proposed design.
¿Cómo citar?
Marcos A. Gonzalez Olvera, Anahi Flores-Perez & Lizeth Torres. Adaptive Observer Design for the Fractional-Order Hindmarsh-Rose Neuron. Memorias del Congreso Nacional de Control Automático, pp. 412-417, 2021.
Palabras clave
Adaptive Observer, Parametric Identification, Hindmarsh-Rose neuron model, fractional-order system
Referencias
- Aguila-Camacho, N. and Duarte-Mermoud, M.A. (2016). Boundedness of the solutions for certain classes of fractional differential equations with application to adaptive systems. ISA transactions, 60, 82–88.
- Caponetto, R. (2010). Fractional order systems: modeling and control applications, volume 72. World Scientific.
- Caputo, M. (1967). Linear models of dissipation whose q is almost frequency independent-ii. Geophysical Journal International, 13(5), 529–539.
- Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., and Castro-Linares, R. (2015). Using general quadratic lyapunov functions to prove lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22(1), 650–659.
- Duarte Ortigueira, M. and Tenreiro Machado, J. (2019). Fractional derivatives: the perspective of system theory. Mathematics, 7(2), 150.
- FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal, 1(6), 445–466.
- Flores-Pérez, A., González-Olvera, M.A., and Tang, Y. (2018). Contraction-based identification of a neuron model with nonlinear parameterization via synchronization. In 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. IEEE.
- González-Olvera, M.A. and Tang, Y. (2018). Adaptive observer for a class of nonlinear fractional-order systems. Memorias del Congreso Nacional de Control Automático.
- Gorenflo, R. and Mainardi, F. (1997). Fractional calculus. Springer.
- rant, M. and Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, and H. Kimura (eds.), Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, 95–110. Springer-Verlag Limited.
- Grant, M. and Boyd, S. (2014). CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx.
- Hindmarsh, J.L. and Rose, R. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal society of London. Series B. Biological sciences, 221(1222), 87–102.
- Hindmarsh, J. and Rose, R. (1982). A model of the nerve impulse using two first-order differential equations. Nature, 296(5853), 162–164.
- Hodgkin, A.L. and Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500–544.
- Jun, D., Guang-Jun, Z., Yong, X., Hong, Y., and Jue, W. (2014). Dynamic behavior analysis of fractionalorder hindmarsh–rose neuronal model. Cognitive neurodynamics, 8(2), 167–175.
- Kaslik, E. (2017). Analysis of two-and three-dimensional fractional-order hindmarsh-rose type neuronal models. Fractional Calculus and Applied Analysis, 20(3), 623– 645.
- Lundstrom, B.N., Higgs, M.H., Spain, W.J., and Fairhall, A.L. (2008). Fractional differentiation by neocortical pyramidal neurons. Nature neuroscience, 11(11), 1335–1342.
- Navarro-Guerrero, G. and Tang, Y. (2017). Fractional order model reference adaptive control for anesthesia. International Journal of Adaptive Control and Signal Processing, (January), 1–11. doi:10.1002/acs.2769.
- Rihan, F.A. (2013). Numerical modeling of fractionalorder biological systems. In Abstract and Applied Analysis, volume 2013. Hindawi.
- Sabatier, J., Merveillaut, M., Malti, R., and Oustaloup, A. (2010). How to impose physically coherent initial conditions to a fractional system? Communications in Nonlinear Science and Numerical Simulation, 15(5), 1318–1326.
- Shilnikov, A., Calabrese, R.L., and Cymbalyuk, G. (2005). Mechanism of bistability: tonic spiking and bursting in a neuron model. Physical Review E, 71(5), 056214.
- Xiao, M. (2012). Stability analysis and hopf-type bifurcation of a fractional order hindmarsh-rose neuronal model. In International Symposium on Neural Networks, 217–224. Springer.
- Xiao, M. (2013). Bifurcation control of a fractional order hindmarsh-rose neuronal model. In International Symposium on Neural Networks, 88–95. Springer.