Gonzalez-Olvera, Marcos A. | Univ. Autónoma De La Ciudad De México |
Tang, Yu | National Univ. of Mexico |
Resumen: In this work we present an adaptive observer design for a class of Nonlinear-Fractional-Order Systems (NFOS) where, using an analysis based on quadratic Lyapunov functions and an extension of Barbalat's theorem to the fractional-order case, the asymptotic convergence of the observed states to the real ones is proven, as well as the boundedness of the parameter reconstruction. Numeric examples are presented to show the effectiveness of the proposed design.
Total descargados hasta ahora
148 Downloads
¿Cómo citar?
González-Olvera, Marcos A. & Tang, Yu. Adaptive Observer for a Class of Nonlinear Fractional-Order Systems. Memorias del Congreso Nacional de Control Automático, pp. 114-118, 2018.
Palabras clave
Fractional order systems, adaptive observers
Referencias
- Jun-Yi Cao, Jin Liang, and Bing-Gang Cao. Optimization of fractional order pid controllers based on genetic algorithms. In Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on, volume 9, pages 5686–5689. IEEE, 2005.
- Riccardo Caponetto. Fractional order systems: modeling and control applications, volume 72. World Scientific, 2010.
- Michele Caputo. Linear models of dissipation whose q is almost frequency independent-ii. Geophysical Journal International, 13(5):529–539, 1967.
- Lubomır Dorc´ak, V Lesko, and I Kostial. Identification of fractional-order dynamical systems. arXiv preprint math/0204187, 2002.
- Manuel A. Duarte-Mermoud, Norelys Aguila-Camacho, Javier A. Gallegos, and Rafael Castro-Linares.
- Javier A. Gallegos, Manuel A. Duarte-Mermoud, Norelys Aguila-Camacho, and Rafael Castro-Linares.
- Marcos A González-Olvera and Yu Tang. Black-box identification of a class of nonlinear systems by a recurrent neurofuzzy network. IEEE transactions on neural networks, 21(4):672–679, 2010.
- Rudolf Gorenflo and Francesco Mainardi. Fractional calculus. Springer, 1997.
- Kristinn Kristinsson and Guy A Dumont. System identification and control using genetic algorithms. Systems, Man and Cybernetics, IEEE Transactions on, 22(5): 1033–1046, 1992.
- Rachid Mansouri, Maamar Bettayeb, and Said Djennoune. Approximation of high order integer systems by fractional order reduced-parameters models. Mathematical and Computer Modelling, 51(1):53–62, 2010.
- Gerardo Navarro-Guerrero and Yu Tang. Fractional order model reference adaptive control for anesthesia. International Journal of Adaptive Control and Signal Processing, (January):1–11, 2017. ISSN 08906327. doi: 10.1002/acs.2769. URL http://doi.wiley.com/10.1002/acs.2769.
- Alain Oustaloup. La commande CRONE: commande robuste d’ordre non entier. Hermes, 1991.
- Igor Podlubny. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, volume 198. Academic press, 1998.
- Jocelyn Sabatier, Mohamed Aoun, Alain Oustaloup, Gilles Gr´egoire, Franck Ragot, and Patrick Roy. Fractional system identification for lead acid battery state of charge estimation. Signal Processing, 86(10):2645– 2657, 2006.
- Li-Guo Yuan and Qi-Gui Yang. Parameter identification and synchronization of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 17(1):305–316, 2012.
- Shengxi Zhou, Junyi Cao, and Yangquan Chen. Genetic algorithm-based identification of fractional-order systems. Entropy, 15(5):1624–1642, 2013.