Alvarado-Mendez, Pedro-Eusebio | Tecnológico Nacional De México |
Astorga-Zaragoza, Carlos | Tecnológico Nacional De México |
Hernandez Gonzalez, Omar | Université De Caen Basse Normandie |
Osorio-Gordillo, Gloria-Lilia | Centro Nacional De Investigación Y Desarrollo Tecnológico |
Ramírez-Rasgado, Felipe | Tecnológico Nacional De México |
Resumen: In this work parameter and state estimation are studied for a class of Lipschitz nonlinear systems with faults in the system. A robust adaptive nonlinear observer is proposed to achieve state and unknown parameter estimation. The behavior of the nonlinear system in the presence of external disturbances is analyzed. The observer has a nonlinear structure, which consists of a H∞ adaptive observer to estimate the unknown parameter, in order to monitor the system performance by attenuating of the unknown input and thus achieves the insensitivity of the observer. The stability analysis is performed based on the Lyapunov stability theory, where an ideal condition for the stability of the observer is ensured, satisfying the performance of the ℋ∞ criterion. Numerical simulations of an automobile suspension system are carried out in which the tire stiffness is estimated and the vehicle performance caused by the perturbation is monitored. The results show that the proposed observer can accurately estimate the system state and the unknown parameter.
¿Cómo citar?
P.-E. Alvarado-Mendez, C.-M. Astorga-Zaragoza, O. Hernandez-Gonzale, G.-L. Osorio-Gordillo & F. Ramirez-Rasgado. Adaptive Observer for Nonlinear Systems with Uncertainies. Memorias del Congreso Nacional de Control Automático, pp. 406-411, 2021.
Palabras clave
Nonlinear systems, H∞, Nonlinear adaptive observer
Referencias
- Besan¸con, G. (2000). Remarks on nonlinear adaptive observer design. Systems & Control Letters, 41(4), 271– 280.
- Besancon, G. (2007). Nonlinear Observers and Applications, volume 363. Springer.
- Dochain, D. and Perrier, M. (2002). A state observer for (bio) processes with uncertain kinetics. In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), volume 4, 2873–2878.
- Ekramian, M., Hosseinnia, S., and Sheikholeslam, F. (2011). Observer design for non-linear systems based on a generalised Lipschitz condition. IET Control Theory & Applications, 5(16), 1813–1818.
- Ekramian, M., Sheikholeslam, F., Hosseinnia, S., and Yazdanpanah, M.J. (2013). Adaptive state observer for Lipschitz nonlinear systems. Systems & Control Letters, 62(4), 319–323.
- Farza, M., M’saad, M., Menard, T., Ltaief, A., and Maatoug, T. (2018). Adaptive observer design for a class of nonlinear systems. application to speed sensorless induction motor. Automatica, 90, 239–247.
- Guo, S., Yang, S., and Pan, C. (2006). Dynamic modeling of magnetorheological damper behaviors. Journal of Intelligent Material Systems and Structures, 17(1), 3– 14.
- Martínez, J.C.T., Varrier, S., Menéndez, R.M., and Sename, O. (2016). Control tolerante a fallas en una suspensión automotriz semiactiva. Revista Iberoamericana de Automática e Informática industrial, 13(1), 56– 66.
- Mendez, P.A., Zaragoza, C.A., Gordillo, G.O., Ramírez, G.G., Menéndez, R.M., and Márquez, E.Q.M. (2019). Monitoreo de una suspensión semiactiva a través de un observador adaptable. In Congreso Nacional de Control Automático 2019, 127–132.
- Osorio-Gordillo, G.L., Darouach, M., and Astorga Zaragoza, C.M. (2015). H∞ dynamical observers design for linear descriptor systems. application to state and unknown input estimation. European Journal of Control, 26, 35–43.
- Raoufi, R., Marquez, H., and Zinober, A. (2010). H∞ sliding mode observers for uncertain nonlinear lipschitz systems with fault estimation synthesis. International Journal of Robust and Nonlinear Control, 20(16), 1785– 1801.
- Ren, X.L. (2020). Observer design for actuator failure of a quadrotor. IEEE Access, 8.
- Shaheen, B., Nazir, M.S., Rehan, M., and Ahmad, S. (2020). Robust generalized observer design for uncertain one-sided Lipschitz systems. Applied Mathematics and Computation.
- Thau, F. (1973). Observing the state of non-linear dynamic systems. International journal of control, 17(3), 471–479.
- Xia, L., Cong, J., Xu, X., Gao, Y., and Zhang, S. (2020). H-infinity adaptive observer enhancements for vehicle chassis dynamics-based navigation sensor fault construction. International Journal of Advanced Robotic Systems, 17(2), 1–17.
- Zemouche, A., Rajamani, R., Kheloufi, H., and Bedouhene, F. (2017). Robust observer-based stabilization of Lipschitz nonlinear uncertain systems via lmisdiscussions and new design procedure. International Journal of Robust and Nonlinear Control, 27(11), 1915– 1939.
- Zemouche, A., Rajamani, R., Trinh, H., and Zasadzinski, M. (2016). A new LMI based H∞ observer design method for Lipschitz nonlinear systems. In 2016 European Control Conference (ECC), 2011–2016.
- Zhang, Q. (2002). Adaptive observer for multiple-inputmultiple-output (MIMO) linear time-varying systems. IEEE Transactions on Automatic Control, 47(3), 525– 529.