Franco, Roberto | Tecnológico Nacional de México/I.T. La Laguna, |
Héctor, Ferreira de Loza | Cátedras CONACYT |
Ferreira de Loza, Alejandra | Cátedras CONACYT |
Efimov, Denis | University of Lille |
https://doi.org/10.58571/CNCA.AMCA.2022.021
Resumen: In this paper, a robust adaptive observer is proposed for dynamical disturbed regression models. For the constant unknown parameters case, the proposed algorithm ensures asymptotic convergence to zero of the parameter identification error in presence of time-dependent external disturbances. For the case of the time-varying parameters, the parameter identification error converges asymptotically to an arbitrarily small region around the origin in presence of time-dependent external disturbances. The synthesis of the adaptive observer is based on the solution of a linear matrix inequality. Numerical simulations illustrate the convergence properties of the proposed algorithm.
¿Cómo citar?
Franco, Roberto, Ríos, Héctor, Ferreira de Loza, Alejandra & Efimov, Denis. Adaptive Observer for Regression Models with External Time–Dependent Disturbances. Memorias del Congreso Nacional de Control Automático, pp. 163-168, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.021
Palabras clave
Sistemas Adaptables; Control Discontinuo (modos deslizantes); Modelado e Identificación de Sistemas
Referencias
- Asprou, M. and Kyriakides, E. (2017). Identification and estimation of erroneous transmission line parameters using PMU measurements. IEEE Transactions on Power Delivery, 32, 2510–2519.
- Ballesteros, M., Polyakov, A., Efimov, D., Chairez, I., and Poznyak, A. (2021). Non-parametric identification of homogeneous dynamical systems. Automatica, 129, 109600.
- Chen, B., Zhu, Y., Hu, J., and Principe, J. (2013). System Parameter Identification: Information Criteria and Algorithms. Springer, London.
- Chen, J., Zhang, G., and Li, Z. (2011). Online parameter estimation for a class of time-varying continuous systems with bounded disturbances. International Journal of Adaptive Control and Signal Processing, 25, 18–32.
- Garcia-Marquez, F. and Garcia, C. (2020). Parameter estimation and performance comparison of friction models for pneumatic valves. Control Engineering Practice, 104, 104629.
- Ioannou, P. and Sun, J. (1996). Robust Adaptive Control. Prentice Hall, Inc., New Jersey, USA.
- Jin, H., Liu, Z., Zang, H., Liu, Y., and Zhao, J. (2018). A dynamic parameter identification method for flexible joints based on adaptive control. IEEE Transactions on Mechatronics, 23, 2896–2908.
- Kapetina, M., Repaic, M., Pisano, A., and Jelicic, Z. (2019). Adaptive parameter estimation in LTI systems. IEEE Transactions on Automatic Control, 64, 4188–4195.
- Keesman, K. (2011). System Identification. Advanced Textbooks in Control and Signal Processing. Springer, London.
- Liu, Y., Wang, H., and Zhang, W. (2021). Robust parameter estimation with outlier-contaminated correlated measurements and applications to aerodynamic coefficient identification. Aerospace Science and Technology, 118, 106995.
- Luspay, T. and Grigoriadis, K. (2016). Adaptive parameter estimation of blood pressure dynamics subject to vasoactive drug infusion. IEEE Transactions on Control Systems Technology, 24, 779–787.
- Na, J., Yang, J., Ren, X., and Guo, Y. (2014). Robust adaptive estimation of nonlinear system with timevarying parameters. International Journal of Adaptive Control and Signal Processing, 29, 1055–1072.
- Na, J., Yuang, J., Wu, X., and Guo, Y. (2015). Robust adaptive parameter estimation of sinusoidal signals. Automatica, 53, 376–384.
- Nevaranta, N., Parkkinen, J., Lindh, T., Niemela, M., Pyrhonen, O., and Pyrhonen, J. (2015). Online estimation of linear tooth belt drive system parameters. IEEE Transactions on Industrial Electronics, 62, 7214–7223.
- Ortega, R., Gromov, V., Nuño, E., Pyrkin, A., and Romero, J. (2021). Parameter estimation of nonlinearly parameterized regressions without overparameterization: Application to adaptive control. Automatica, 127, 109544.
- Poon, J., Jain, P., Spanos, C., Kumar, S., and Sanders, S. (2017). Fault prognosis for power electronics systems using adaptive parameter identification. IEEE Transactions on Industry Applications, 53, 2862–2870.
- Reed, D., Sun, J., and Hofmann, G. (2017). Simultaneous identification and adaptive torque control of permanente magnet synchronous machines. IEEE Transactions on Control Systems Technology, 25, 1372–1383.
- Ríos, H., Efimov, D., Moreno, J., Perruquetti, W., and Rueda-Escobedo, J. (2017). Time-varying parameter identification algorithms: Finite and fixed-time convergence. IEEE Transactions on Automatic Control, 62, 3671–3678.
- Rueda-Escobedo, J. andMoreno, J. (2016). Discontinuous gradient algorithm for finite-time estimation of timevarying parameters. International Journal of Control, 89, 1838–1848.
- Yang, C., Jiang, Y., He, W., Na, J., Li, Z., and Xu, B. (2018). Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Transactions on Industrial Electronics, 65, 8112–8123.