Cortes Martinez, Rolando | CINVESTAV |
Rodriguez Cortes, Hugo | CINVESTAV |
Resumen: Este artículo presenta un algoritmo de control de orientación para vehículos espaciales centrado en el manejo de la redundancia en actuación. Para esto se llevan a cabo pruebas experimentales sobre un simulador físico en tierra de un grado de libertad que incorpora no linealidades debidas a los actuadores empleados, en este caso, una rueda de reacción (RR) y una bobina de par magnético (MP). El esquema propuesto previene la saturación de la RR al manipular su velocidad a una referencia deseada sin comprometer el objetivo de control de orientación. Para esto se hace uso del espacio nulidad de la matriz de distribución de actuadores. Los actuadores empleados en este artículo son diseñados expresamente para una aplicación satelital tipo CubeSat 1U.
¿Cómo citar?
Rolando Cortés Martínez & Hugo Rodríguez Cortés. Algoritmo de Asignación de Actuadores para Control de Orientación. Memorias del Congreso Nacional de Control Automático, pp. 347-352, 2018.
Palabras clave
Redundancia, bobina de par magnético, rueda de reacción, saturación, Cubesat
Referencias
- Bellini, N. (2013). Magnetic actuators for nanosatellite attitude control. Ph.D. thesis.
- Chaturvedi, N.A., Sanyal, A.K., and McClamroch, N.H. (2011). Rigid-body attitude control. Control Systems, IEEE, 31(3), 30–51.
- Cortés, R. and Rodriguez-Cortes, H. (2017). Spacecraft attitude control system based on total energy control approach. In 68th international astronautical congress 2017, 1–7.
- Cullity, B.D. and Graham, C.D. (2011). Introduction to magnetic materials. John Wiley & Sons.
- Fulcher, R. (1969). A brushless dc torquer-driven reaction wheel for spacecraft attitude control. Technical report, National Aeronautics and Space Administration.
- Ge, S. and Cheng, H. (2006). A comparative design of satellite attitude control system with reaction wheel. 359–364.
- Johansen, T.A. and Fossen, T.I. (2013). Control allocation, a survey. Automatica, 49(5), 1087–1103.
- Koditschek, D.E. (1988). Application of a new Lyapunov function to global adaptive attitude tracking. In Proceedings of the 27th IEEE Conference on Decision and Control, 63–68 vol.1. doi:10.1109/CDC.1988.194270.
- Lee, T., Leok, M., and Harris, N. (2017). Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds.
- Lee, T., Leok, M., and McClamroch, N.H. (2013). Nonlinear robust tracking control of a quadrotor uav on se (3). Asian Journal of Control, 15(2), 391–408.
- Li, J., Post, M., Wright, T., and Lee, R. (2013). Design of attitude control systems for cubesat-class nanosatellite. Journal of Control Science and Engineering, 2013, 4.
- Markley, F.L. and Crassidis, J.L. (2014). Fundamentals of Spacecraft Attitude Determination and Control, volume 33. Springer.
- Mehrjardi, M.F. and Mirshams, M. (2009). Design and manufacturing of a research magnetic torquer rod. In Fourth International Conference on Experimental Mechanics, 75221W–75221W. International Society for Optics and Photonics.
- MicroStrain, L. (2014). 3DM-GX4-25. URL http://www. microstrain.com.
- Nakamura, Y. (1990). Advanced robotics: redundancy and optimization. Addison-Wesley Longman Publishing Co., Inc.
- Pong, C.M. (2014). High-Precision Pointing and Attitude Estimation and Control Algorithms for HardwareConstrained Spacecraft. Ph.D. thesis, Massachusetts Institute of Technology.
- Savala, C. (2018). Designing a magnetic torque rod for a cubesat. poster. URL http://www.nps.edu/ Academics/GNCLab/ResearchLabs/GNCLab.html.
- Schultz, C.R. (2006). An Autonomous Underwater Vehicle for Validating Internal Actuator Control Strategies. Ph.D. thesis, Virginia Polytechnic Institute and State University.
- Sidi, M.J. (1997). Spacecraft dynamics and control: a practical engineering approach, volume 7. Cambridge university press.
- Snider, R.E. (2010). Attitude Control of a Satellite Simulator Using Reaction Wheels and a PID Controller. Master’s thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA.
- Sugita, M. (2016). Torque distribution algorithm for effective use of reaction wheels torque and angular momentum. 67th International Astronautical Congress 2016.
- Wiley J. Larson, J.R.W. (2005). Space Mission Analysis and Design. Space Technology Library. Microcosm, 3rd edition. URL http://gen.lib.rus.ec/book/index. php?md5=DBC7580413EC91D289D95371EE0130B0.
- Wu, Y.H., Han, F., Zheng, M.H., Wang, F., Hua, B., Chen, Z.M., and Cheng, Y.H. (2018). Attitude tracking control for a space moving target with high dynamic performance using hybrid actuator. Aerospace Science and Technology.
- Yedamale, P. (2003). Brushless dc (bldc) motor fundamentals. Microchip Technology Inc, 20.