Martín Ortiz | Universidad Nacional Autónoma de México |
Natanael Vieyra | Universidad Nacional Autónoma de México |
Paul Maya-Ortiz | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2022.037
Resumen: The Islanded Microgrids (IMGs) arise as a solution to the integral expansion of Electric Power Systems (EPS). The IMGs can be considered as islanded subsystems that usually include renewable energy sources (RESs) in order to satisfy the consumers’ demand. The inclusion of these sources is reflected in grid frequency and voltage variations, particularly, due to their intermittent nature, which depends, among other conditions, on weather changes. To mitigate the intermittence effects associated with the generation, in the present study, a backup based on an Energy Storage System (ESS) is evaluated, and it shows that quality, reliability and security of an isolated power grid are improved. Numerical evaluation, based in a three-buses IMG benchmark, is done and it corroborates the teoretical results.
¿Cómo citar?
Ortiz, M., Vieyra, N. & Maya-Ortiz, P. An Energy Storage System for Islanded Microgrids. Memorias del Congreso Nacional de Control Automático, pp. 427-432, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.037
Palabras clave
Sistemas Eléctricos de Potencia; Control de Sistemas Lineales; Sistemas Electrónicos de Potencia
Referencias
- Amirnaser, Y. and Reza, I. (2010). Grid-Imposed Frequency VSC System: Control in dq-Frame, chapter 8, 204–244. John Wiley Sons, Ltd. doi: https://doi.org/10.1002/9780470551578.ch8.
- Andishgar, M.H., Gholipour, E., and allah Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043 – 1060. doi: https://doi.org/10.1016/j.rser.2017.05.267.
- Farrokhabadi, M., K¨onig, S., Ca˜nizares, C.A., Bhattacharya, K., and Leibfried, T. (2018). Battery energy storage system models for microgrid stability analysis and dynamic simulation. IEEE Transactions on Power Systems, 33(2), 2301–2312. doi: 10.1109/TPWRS.2017.2740163.
- Fusheng, L., Ruisheng, L., and Fengquan, Z. (2016). Chapter 1 – overview of microgrid. In L. Fusheng, L. Ruisheng, and Z. Fengquan (eds.), Microgrid Technology and Engineering Application, 1 – 10. Academic Press, Oxford.
- Gao, D.W. (2015). Chapter 3 – interfacing between an ess and a microgrid. In D.W. Gao (ed.), Energy Storage for Sustainable Microgrid, 79 – 121. Academic Press, Oxford.
- Hamidi, S.A., Ionel, D.M., and Nasiri, A. (2015). Modeling and management of batteries and ultracapacitors for renewable energy support in electric power systems an overview. Electric Power Components and Systems, 43(12), 1434–1452.
- Ilic, M.D. and Zaborszky, J. (2000). Dynamics and control of large electric power systems. New York ; Chichester: Wiley. ”A Wiley-Interscience publication.”.
- Kanchanaharuthai, A., Chankong, V., and Loparo, K.A. (2015). Transient stability and voltage regulation in multimachine power systems vis-`a-vis statcom and battery energy storage. IEEE Transactions on Power Systems, 30(5), 2404–2416.
- Kularatna, N. (2015). Energy storage devices—a general overview. In N. Kularatna (ed.), Energy Storage Devices for Electronic Systems, 1 – 28. Academic Press, Boston.
- Lawder, M.T., Suthar, B., Northrop, P.W.C., De, S., Hoff, C.M., Leitermann, O., Crow, M.L., Santhanagopalan, S., and Subramanian, V.R. (2014). Battery energy storage system (bess) and battery management system (bms) for grid-scale applications. Proceedings of the IEEE, 102(6), 1014–1030. doi: 10.1109/JPROC.2014.2317451.
- Shahgholian, G. (2021). A brief review on microgrids: Operation, applications, modeling, and control. International Transactions on Electrical Energy Systems, 31(6), e12885. doi:https://doi.org/10.1002/2050-7038.12885.
- Silva-Saravia, H., Pulgar-Painemal, H., and Mauricio, J.M. (2017). Flywheel energy storage model, control and location for improving stability: The chilean case. IEEE Transactions on Power Systems, 32(4), 3111–3119. doi:10.1109/TPWRS.2016.2624290.
- Sparacino, A.R., Reed, G.F., Kerestes, R.J., Grainger, B.M., and Smith, Z.T. (2012). Survey of battery energy storage systems and modeling techniques. In 2012 IEEE Power and Energy Society General Meeting, 1–8. doi:10.1109/PESGM.2012.6345071.
- Sørensen, B. (2007). Chapter 5 engine conversion of solar energy. In B. Sorensen (ed.), Renewable Energy Conversion, Transmission and Storage, 22 – 25. Academic Press, Burlington.
- Tsolas, N., Arapostathis, A., and Varaiya, P. (1985). A structure preserving energy function for power System transient stability analysis. IEEE Transactions on Circuits and Systems, 32(10), 1041–1049. doi: 10.1109/TCS.1985.1085625.
- Valencia, N.V. (2016). Modelado y Estimación de estados en sistemas eléctricos de potencia.
- Vieyra, N., Maya, P., and Castro, L.M. (2020). Dynamic state estimation for microgrid structures. Electric Power Components and Systems, 48(3), 320–332.
- Xu, X., Bishop, M., Donna G, O., and Chen, H. (2016). Application and modeling of battery energy storage in power systems. 2, 82–90.
- Yang, Z., Shen, C., Zhang, L., Crow, M.L., and Atcitty, S. (2001). Integration of a statcom and battery energy storage. In 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262), volume 3, 1798 vol.3–. doi: 10.1109/PESS.2001.970349.