Santillán, Raúl | Universidad Politécnica de Pachuca |
Ortiz, Nery | Universidad Politécnica de Pachuca |
Hernández-Cortés, Tonatiuh | Universidad Politécnica de Pachuca |
Estrada-Manzo, Víctor | Universidad Politécnica de Pachuca |
https://doi.org/10.58571/CNCA.AMCA.2024.004
Resumen: This work proposes a discrete-time output regulator for nonlinear descriptor systems. The approach consists in two parts: 1) the design of a convex nonlinear stabilizer computed by means of the so-called non-quadratic Lyapunov functions, 2) the design of a linear regulator computed through the so-called Francis equations for descriptor models; the designing conditions of both parts are in terms of linear matrix inequalities. The effectiveness of the proposal is illustrated via numerical examples.
¿Cómo citar?
Santillán, R., Ortiz, N., Hernández Cortés, T. & Estrada Manzo, V. (2024). An LMI-Based Output Regulation of Discrete-Time Nonlinear Descriptor Systems. Memorias del Congreso Nacional de Control Automático 2024, pp. 18-23. https://doi.org/10.58571/CNCA.AMCA.2024.004
Palabras clave
Output Regulation, discrete-time Descriptor Systems, Lyapunov Method, Linear Matrix Inequality
Referencias
- Bernal, M., Marquez, R., Estrada-Manzo, V., and Castillo-Toledo, B. (2012). Nonlinear output regulation via Takagi-Sugeno fuzzy mappings: A full-information LMI approach. In Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on, 1–7.
- Bernal, M., Sala, A., Lendek, Z., and Guerra, T.M. (2022). Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach, volume 408. Springer Nature.
- Boyd, S., Ghaoui, L.E., Feron, E., and Belakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, volume 15. SIAM: Studies In Applied Mathematics, Philadelphia, USA.
Castillo, B., Di Gennaro, S., Monaco, S., and NormandCyrot, D. (1993). Nonlinear regulation for a class of discrete-time systems. Systems & control letters, 20(1), 57–65. - Castillo, B., Meda, J.A., and Titli, A. (2003). A fuzzy output regulator for Takagi-Sugeno fuzzy models. In In Proc. 2003 IEEE International Symposium On Intelligent Control, 310–315. Houston, TX.
- Castillo-Toledo, B. and Meda-Campaña, J.A. (2004). The fuzzy discrete-time robust regulation problem: an LMI approach. IEEE Transactions on Fuzzy Systems, 12(3), 360–367.
- Estrada-Manzo, V., Guerra, T.M., Lendek, Z., and Pudlo, P. (2014). Discrete-time Takagi-Sugeno descriptor models: controller design. In 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2277–2281.
- Estrada-Manzo, V., Lendek, Z., Guerra, T.M., and Pudlo, P. (2015). Controller design for discrete-time descriptor models: a systematic LMI approach. IEEE Transactions on Fuzzy Systems, 23(5), 1608–1621.
- Francis, B. (1977). The linear multivariable regulator problem. SIAM Journal of Control and Optimization, 15, 486–505.
- Guerra, T.M. and Vermeiren, L. (2004). LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in Takagi-Sugeno’s form. Automatica, 40(5), 823–829.
- Hernandez-Cortes, T., Amador-Macias, M., TapiaHerrera, R., and Meda-Campana, J. (2024). Output regulation for descriptor systems with high-gain observer used as exosystem for unmodeled references. IEEE Latin America Transactions, 22(2), 156–165.
- Isidori, A. (1995). Nonlinear Control Systems. Springer, London, 3 edition.
- Isidori, A. and Byrnes, C.I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131–140.
- Lin, W. and Dai, L. (1996). Solutions to the output regulation problem of linear singular systems. Automatica, 32(12), 1713–1718.
- Liu, X. and Zhang, Q. (2003). Approaches to quadratic stability conditions and H∞; control designs for T-S fuzzy systems. IEEE Transactions on Fuzzy Systems, 11(6), 830–839.
- Ohtake, H., Tanaka, K., and Wang, H.O. (2001). Fuzzy modeling via sector nonlinearity concept. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, volume 1, 127–132.
- Oliveira, M. and Skelton, R. (2001). Stability tests for constrained linear systems. In Perspectives in robust control, volume 268 of Lecture Notes in Control and Information Sciences, 241–257. Springer-Verlag, Berlin.
- Poblete, L.A., Hernández-Cortés, T., Estrada-Manzo, V., et al. (2022). On the nonlinear output regulation for systems described by Takagi-Sugeno fuzzy descriptor models with a steady-state mapping as an LMI optimization problem. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(18), 85–91.
- Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116–132.
- Tanaka, K. and Wang, H. (2001). Fuzzy Control Systems Design and Analysis: A linear matrix inequality approach. John Wiley & Sons, New York.
- Tuan, H., Apkarian, P., Narikiyo, T., and Yamamoto, Y. (2001). Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Transactions on Fuzzy Systems, 9(2), 324–332.
- Wang, H., Tanaka, K., and Griffin, M. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1), 14–23