Ortiz, Nery | Universidad Politécnica de Pachuca |
Santillán, Raúl | Universidad Politécnica de Pachuca |
Estrada-Manzo, Víctor | Universidad Politécnica de Pachuca |
https://doi.org/10.58571/CNCA.AMCA.2024.052
Resumen: This paper proposes a solution to design an observer for singular linear systems in terms of linear matrix inequalities whose solvability is verified in polynomial time. The observer under design shares the idea of a Luenberger one but adding the derivative of the outputs, which leads to the regularization of the error system. The direct Lyapunov method is employed for designing both the proportional and derivative gains and thus guaranteeing the stability of the error system. Two examples illustrate the effectiveness of the proposal.
¿Cómo citar?
Ortiz, N., Santillán, R. & Estrada Manzo, V. (2024). An LMI-Based Proportional-Derivative Observer for Singular Linear Systems. Memorias del Congreso Nacional de Control Automático 2024, pp. 303-307. https://doi.org/10.58571/CNCA.AMCA.2024.052
Palabras clave
Observers, Descriptor Systems, Lyapunov Method, Linear Matrix Inequality, Singular Systems, Pantelides algorithm
Referencias
- Arceo, J.C., Sánchez, M., Estrada-Manzo, V., and Bernal, M. (2018). Convex stability analysis of nonlinear singular systems via linear matrix inequalities. IEEE Transactions on Automatic Control, 64(4), 1740–1745.
- Bernal, M., Estrada, V., and Márquez, R. (2019). Diseno e implementación de sistemas de control basados en estructuras convexas y desigualdades matriciales lineales.
- Bernal, M., Sala, A., Lendek, Z., and Guerra, T.M. (2022). Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach, volumen 408. Springer Nature.
- Boyd, S., Ghaoui, L.E., Feron, E., and Belakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, volume 15. SIAM: Studies In Applied Mathematics, Philadelphia, USA.
- Campbell, S. (1982). Singular systems of differential equations ii. Pitman, New York.
Carroll, R. and Lindorff, D. (1973). An adaptive observer for single-input single-output linear systems. IEEE Transactions on Automatic Control, 18(5), 428–435. - Chadli, M. and Darouach, M. (2012). Novel bounded real lemma for discrete-time descriptor systems: Application to H∞ control design. Automatica, 48(2), 449–453.
- Chadli, M. and Darouach, M. (2013). Further enhancement on robust H∞ control design for discrete-time singular systems. IEEE Transactions on Automatic Control, 59(2), 494–499.
- Chadli, M., Darouach, M., and Daafouz, J. (2008). Static output stabilisation of singular LPV systems: LMI formulation. In 2008 47th IEEE Conference on Decision and Control, 4793–4796. IEEE.
- Cobb, D. (1984). Controllability, observability, and duality in singular systems. IEEE Transactions on Automatic Control, 29(12), 1076–1082.
- Dai, L. (1989). Singular control systems, volume 118. Springer.
- Duan, G.R. (2010). Analysis and design of descriptor linear systems, volume 23. Springer Science & Business Media.
- Gahinet, P., Nemirovski, A., Laub, A.J., and Chilali, M. (1995). LMI Control Toolbox. Math Works, Natick, USA.
- Gao, Z. (2005). PD observer parametrization design for descriptor systems. Journal of the Franklin Institute, 342(5), 551–564.
- Gear, C.W. (1988). Differential-algebraic equation index transformations. SIAM Journal on Scientific and Statistical Computing, 9(1), 39–47.
- Gupta, M., Tomar, N., and Bhaumik, S. (2014). PD observer design for linear descriptor systems. In International Conference on Mathematical Sciences, Elsevier, 40–43.
- Ishihara, J.Y. and Terra, M.H. (2002). On the Lyapunov theorem for singular systems. IEEE transactions on Automatic Control, 47(11), 1926–1930.
- Kailath, H. (1980). Linear Systems. Prentice Hall, New York, USA.
- Khalil, H. (2014). Nonlinear Control. Prentice Hall, New Jersey, USA.
- Kumar, A. and Daoutidis, P. (1995). Feedback control of nonlinear differential-algebraic-equation systems. AIChE Journal, 41(3), 619–636.
- Kumar, A. and Daoutidis, P. (1998). Control of nonlinear differential algebraic equation systems: an overview. Nonlinear model based process control, 311–344.
- Lewis, F., Dawson, D., and Abdallah, C. (2003). Robot manipulator control: theory and practice. CRC Press.
- Lewis, F.L. (1986). A survey of linear singular systems. Circuits, systems and signal processing, 5, 3–36.
- Luenberger, D. (1966). Observers for multivariable systems. IEEE Transactions on Automatic Control, 11 (2), 190–197.
- Luenberger, D. (1971). An introduction to observers. IEEE Trans. on Automatic Control, 16, 596–602.
- Luenberger, D. (1977). Dynamic equations in descriptor form. IEEE Transactions on Automatic Control, 22(3), 312–321.
- Pantelides, C.C. (1988). The consistent initialization of differential-algebraic systems. SIAM Journal on scientific and statistical computing, 9(2), 213–231.
- Rabier, P.J. and Rheinboldt, W.C. (1994). A geometric treatment of implicit differential-algebraic equations. Journal of Differential Equations, 109(1), 110–146.
- Scherer, C. and Weiland, S. (2000). Linear matrix inequalities in control. Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, 3(2).
- Spurgeon, S.K. (2008). Sliding mode observers: a survey. International Journal of Systems Science, 39(8), 751–764.
- Verghese, G., L´evy, B., and Kailath, T. (1981). A generalized state-space for singular systems. IEEE Transactions on Automatic Control, 26(4), 811–831.
- Wells, D.A. (1967). Lagrangian dynamics: With a treatment of Euler’s equations of motion, Hamilton’s equations and Hamilton’s principle. McGraw-Hill.
- Wu, A.G. and Duan, G.R. (2007). Design of PD observers in descriptor linear systems. International Journal of Control, Automation, and Systems, 5(1), 93–98.
- Yip, E. and Sincovec, R. (1981). Solvability, controllability, and observability of continuous descriptor systems. IEEE transactions on Automatic Control, 26(3), 702–707.
- Zhang, Y., Shi, P., Nguang, S.K., and Song, Y. (2014). Robust finite-time H∞ control for uncertain discrete time singular systems with markovian jumps. IET Control Theory & Applications, 8(12), 1105–1111.