Qui-Martin, Javier A. | Instituto Potosino de Investigación Científica y Tecnológica A.C. |
Sanchez, Tonametl | Instituto Potosino de Investigación Científica y Tecnológica A.C. |
https://doi.org/10.58571/CNCA.AMCA.2024.085
Resumen: In this paper we consider an output-feedback homogeneous controller for a class of second order nonlinear systems subject to model uncertainties. We prove that, despite the uncertainty, the controller drives the trajectories of the system to the origin in finite time. The theoretical developments are tested in an electronic experimental set up.
¿Cómo citar?
Qui Martin, J.A. & Sanchez, T. (2024). An output-feedback homogeneous controller: robustness analysis and experiment. Memorias del Congreso Nacional de Control Automático 2024, pp. 499-504. https://doi.org/10.58571/CNCA.AMCA.2024.085
Palabras clave
Nonlinear control systems, Output feedback control, Stability of nonlinear systems, Lyapunov methods, Robust control, Output regulation
Referencias
- Andrieu, V., Praly, L., and Astolfi, A. (2008). Homogeneous Approximation, Recursive Observer Design, and Output Feedback. SIAM Journal on Control and Optimization, 47(4), 1814–1850. doi:10.1137/060675861.
- Bacciotti, A. and Rosier, L. (2005). Liapunov Functions and Stability in Control Theory. Springer, Berlin, 2nd edition. doi:10.1007/b139028.
- Bernuau, E., Polyakov, A., Efimov, D., and Perruquetti, W. (2013). Verification of ISS, iISS and IOSS properties applying weighted homogeneity. Systems & Control Letters, 62(12), 1159 – 1167. doi:10.1016/j.sysconle.2013.09.004.
- Bernuau, E., Perruquetti, W., Efimov, D., and Moulay, E. (2015). Robust finite-time output feedback stabilization of the double integrator. International Journal of Control, 88(3), 451–460. doi:10.1080/00207179.2014.956340.
- Butcher, J.C. (2016). Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Inc., Hoboken, New Jersey, 3rd edition.
- Cruz-Zavala, E., Sanchez, T., Moreno, J.A., and Nuño, E. (2018). Strict Lyapunov functions for homogeneous finite-time second-order systems. In 2018 IEEE Conference on Decision and Control (CDC), 1530–1535. doi: 10.1109/CDC.2018.8619664.
- Davila, J., Fridman, L., and Levant, A. (2005). Secondorder sliding-mode observer for mechanical systems. IEEE Transactions on Automatic Control, 50(11), 1785–1789. doi:10.1109/TAC.2005.858636.
- Grüne, L. (2000). Homogeneous State Feedback Stabilization of Homogenous Systems. SIAM Journal on Control and Optimization, 38(4), 1288–1308. doi: 10.1137/S0363012998349303.
- Hermes, H. (1986). Nilpotent approximations of control systems and distributions. SIAM Journal on Control and Optimization, 24(4), 731–736. doi:10.1137/0324045.
- Kawski, M. (1988). Stabilizibility and nilpotent approximations. In 27th IEEE Conference on Decision and Control (CDC), volume 2, 1244–1248. doi:10.1109/CDC.1988.194520.
- Kawski, M. (1990). Homogeneous stabilizing feedback laws. Control-Theory and Advanced Technology, 6(4), 497–516.
- Khalil, H.K. (2002). Nonlinear Systems. Prentice Hall, 3rd. edition.
- Levant, A. (2005). Homogeneity approach to high-order sliding mode design. Automatica, 41(5), 823–830. doi: 10.1016/j.automatica.2004.11.029.
- Michel, A.N., Hou, L., and Liu, D. (2008). Stability of Dynamical Systems. Birkhӓuser, Boston. doi: doi.org/10.1007/978-0-8176-4649-3.
- Moreno, J.A. and Osorio, M. (2012). Strict Lyapunov functions for the Super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4), 1035–1040. doi: 10.1109/TAC.2012.2186179.
- Polyakov, A. (2020). Generalized Homogeneity in Systems and Control. Springer, Cham, Switzerland. doi: 10.1007/978-3-030-38449-4.
- Qian, C. and Lin, W. (2006). Recursive observer design, homogeneous approx., and nonsmooth output feedback stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 51(9), 1457–1471.
- Sanchez, T. and Moreno, J.A. (2021). Homogeneous output-feedback control with disturbance-observer for a class of nonlinear systems. Int. Journal of Robust and Nonlinear Control, 31(9), 3686–3707. doi: doi.org/10.1002/rnc.5207.
- Sanchez, T., Moreno, J.A., and Fridman, L.M. (2018). Output feedback continuous twisting algorithm. Automatica, 96, 298–305. doi: 10.1016/j.automatica.2018.06.049.
- Sanchez, T., Zavala-Río, A., and Zamora-Gómez, G.I. (2023). On the transient behavior and gain design for a class of second order homogeneous systems. Automatica, 149, 110830. doi: doi.org/10.1016/j.automatica.2022.110830.
- Sontag, E.D. (1989). Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 34(4), 435–443. doi:10.1109/9.28018.
- Stefani, G. (1985). Polynomial approximations to control systems and local controllability. In 24th IEEE Conference on Decision and Control (CDC), 33–38. doi: 10.1109/CDC.1985.268467.