Flores-Mejia, Hilario | Universidad Autónoma Metropolitana |
Rodriguez-Jara, Mariana | Universidad Autónoma Metropolitana |
Aguilar-lopez, Ricardo | CINVESTAV |
Puebla, Hector | UAM |
Resumen: El diseño de observadores de estado es fundamental para el monitoreo de variables clave de bioprocesos las cuales comúnmente no están disponibles en línea o son costosas de medir. Previo al diseño de observadores se debe analizar la propiedad de observabilidad, la cual permite identificar las variables de salida necesarias para reconstruir los estados de interés. La observabilidad para sistemas no-lineales es un problema complejo que se ha abordado en la literatura. Sin embargo, su aplicación en bioprocesos es escasa. En el presente trabajo se proponen dos metodologías de observabilidad no lineal en un proceso de producción de biohidrógeno: (i) El rango de la matriz de observabilidad con derivadas de Lie, y (ii) el gramiano empírico. Los resultados permiten identificar la medición para fines de diseño de observadores o esquemas de control de salida en el caso de estudio.
¿Cómo citar?
Hilario Flores-Mejía, Mariana Rodríguez-Jara, Ricardo Aguilar-López & Héctor Puebla. Análisis de Observabilidad No Lineal en Producción de H2 por Fotofermentación. Memorias del Congreso Nacional de Control Automático, pp. 21-26, 2021.
Palabras clave
Bioprocesses, observability, state-observers, differential geometry, empirical gramian
Referencias
- Alexander, R., Campani, G., Dinh, S. and Lima, F. V. (2020). Challenges and opportunities on nonlinear state estimation of chemical and biochemical processes. Processes 8(11), 1462.
- Ali, J. M., Hoang, N. H., Hussain, M. A. and Dochain, D. (2015). Review and classification of recent observers applied in chemical process systems. Comp. Chem. Eng. 76, 27-41.
- Bastin, G. and Dochain, D. (1990) On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam
- Biechele, P., Busse, C., Solle, D., Scheper, T. and Reardon, K. (2015). Sensor systems for bioprocess monitoring. Eng. Life Sci. 15, 469-488.
- Callier, F.M. and Desoer, C.A. (2012). Linear system theory. Springer Science & Business Media.
- Dewasme, L., Bogaerts, P. and Wouwer, A. V. (2009). Monitoring of bioprocesses: mechanistic and data-driven approaches. In Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control (pp. 57- 97). Springer, Berlin, Heidelberg.
- Dincer, I. and Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40, 11094-11111.
- Dochain, D. (2003). State and parameter estimation in chemical and biochemical processes: a tutorial. J. Process Cont. 13, 801-818.
- Hallenbeck, P.C. and Benemann, J.R. (2002). Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy 27, 1185-1193.
- Hahn, J. and Edgar, T.F. (2002). An improved method for nonlinear model reduction using balancing of empirical gramians. Comp. Chem. Eng. 26, 1379-1397.
- Hangos, K.M., Bokor, J. and Szederkényi, G. (2006). Analysis and control of nonlinear process systems. Springer Science & Business Media.
- Himpe, C. (2018). EMGR-the empirical gramian framework. Algorithms 11, 91.
- Kalman, R.E. (1960). Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana, 5(2), 102-119.
- King, S., Kang, W. and Xu, L. (2015). Observability for optimal sensor locations in data assimilation. Int. J. Dyn. Cont. 3, 416-424.
- Komives, C. and Parker, R.S. (2003). Bioreactor state estimation and control. Current Op. Biotech. 14, 468-474.
- Liu, Y.Y., Slotine, J.J. and Barabási, A.L. (2013). Observability of complex systems. Proc. Nat. Academy Sci. 110, 2460- 2465.
- Luo, Y., Kurian, V. and Ogunnaike, B.A. (2021). Bioprocess systems analysis, modeling, estimation, and control. Current Op. Chem. Eng. 33, 100705.
- Luttmann, R., Bracewell, D.G., Cornelissen, G., Gernaey, K. V., Glassey, J., Hass, V.C. and Mandenius, C.F. (2012). Soft sensors in bioprocessing: A status report and recommendations. Biotech. J. 7, 1040-1048.
- Lyubenova, V., Kostov, G. and Denkova-Kostova, R. (2021). Model-based monitoring of biotechnological processes-a review. Processes 9(6), 908.
- Manish, S. and Banerjee, R. (2008). Comparison of biohydrogen production processes. Int. J. Hydrogen Energy 33, 279-286.
- Montanari, A.N. and Aguirre, L.A. (2020). Observability of network systems: A critical review of recent results. J. Control Autom. Elec. Sys. 31(6), 1348-1374.
- Nuñez, S., Garelli, F. and De Battista, H. (2012). Sliding mode observer for biomass estimation in a biohydrogen production process. Int. J. Hydrogen Energy 37, 10089- 10094.
- Pérez, P.A.L., Neria-González, M.I. and López, R.A. (2015). Increasing the bio-hydrogen production in a continuous bioreactor via nonlinear feedback controller. Int. J. Hydrogen Energy 40, 17224-17230.
- Powel, N.D. and Morgansen, K.A. (2015). Empirical observability Gramian rank condition for weak observability of nonlinear systems with control. In 2015 54th IEEE Conference on Decision and Control (CDC) (pp. 6342-6348). IEEE.
- Schügerl, K. (2001). Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J. Biotech. 85, 149-173.
- Singh, A.K. and Hahn, J. (2005). Determining optimal sensor locations for state and parameter estimation for stable nonlinear systems. Ind. Eng. Chem. Res. 44, 5645-5659.
- van Impe, J.F., Vanrolleghem, P.A. and Iserentant, D.M. (Eds.). (2013). Advanced instrumentation, data interpretation, and control of biotechnological processes. Springer Science & Business Media.
- Zhao, L., Fu, H.Y., Zhou, W. and Hu, W.S. (2015). Advances in process monitoring tools for cell culture bioprocesses. Eng. Life Sci. 15, 459-468.