I. Yepez-Lopez | University of San Luis Potosi |
V. Cárdenas | University of San Luis Potosi |
U. Cruz-Velázquez | University of San Luis Potosi |
H. Miranda | University of San Luis Potosi |
J. Alcalá | University of Colima |
https://doi.org/10.58571/CNCA.AMCA.2022.056
Resumen: The power ripple in the DC-link of photovoltaic and energy storage systems interconnected to the AC mains can drastically impact the lifespan of the photovoltaic panel and the system in general. This problem can be easily solved by using DC-link electrolytic capacitors as a passive decoupling method; however, this implies significant drawbacks such as increased volume and cost of the capacitor and a significant reduction in efficiency and reliability. This can be compensated by replacing electrolytic capacitors with active power decoupling methods based on power electronic converters. Thus, a Bidirectional Buck-Boost converter as an active power decoupling scheme is proposed. First, a power decoupling overview is addressed. Afterward, the operation of the Buck-Boost converter is detailed. Therefore, the control strategy is also explained. Finally, some simulations and preliminary experimental results to verify the integrated operation of the power converter are given.
¿Cómo citar?
Yepez-Lopez, I., Cárdenas, V., Cruz-Velázquez, U., Miranda, H. & Alcalá, J. Bidirectional Buck-Boost converter as an Active Power Decoupling schema for Single-Phase Power Inverters. Memorias del Congreso Nacional de Control Automático, pp. 451-456, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.056
Palabras clave
Sistemas Electrónicos de Potencia; Control Clásico; Sistemas Eléctricos de Potencia
Referencias
- Aganza-Torres, A., Cárdenas, V., Miranda-Vidales, H., and Alcalá, J. (2014). Decoupling capacitor minimization in hf-link single-phase cycloconverter based microinverter. Solar Energy, 105, 590–602. doi:https://doi.org/10.1016/j.solener.2014.04.013.
- Cao, X., Zhong, Q.C., and Ming, W.L. (2015). Ripple eliminator to smooth dc-bus voltage and reduce the total capacitance required. IEEE Transactions on Industrial Electronics, 62(4), 2224–2235. doi:10.1109/TIE.2014.2353016.
- Kafanas, G., Jeffrey, M.R., and Yuan, X. (2016). Variable structure control for active power decoupling topologies. In 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), 1–6. doi:10.1049/cp.2016.0170.
- Michal, V. (2016). Switched-mode active decoupling capacitor allowing volume reduction of the high-voltage dc filters. IEEE Transactions on Power Electronics, 31(9), 6104–6111. doi:10.1109/TPEL.2015.2500920.
- Nicieza, L. (2017). Dc-link cancellation in single pase converters.
- Pereira, T.A., Martins, D.C., and Coelho, R.F. (2019). Active-capacitor for power decoupling in single-phase grid-connected converters. In 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), 1–6. doi:10.1109/COBEP/SPEC44138.2019.9065863.
- Qiu, M., Wang, P., Bi, H., and Wang, Z. (2019). Active power decoupling design of a single-phase ac–dc converter. 18.
- Sekiguchi, T. and Shimizu, T. (2019). Study on single-phase photovoltaic power generation System with power decoupling and generation control functions. In 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 – ECCE Asia), 1945–1951. doi:10.23919/ICPE2019-ECCEAsia42246.2019.8797080.
- Sun, Y., Liu, Y., Su, M., Xiong, W., and Yang, J. (2016). Review of active power decoupling topologies in single phase systems. IEEE Transactions on Power Electronics, 31(7), 4778–4794. doi:10.1109/TPEL.2015.2477882.
- Xu, S., Mao, M., Shao, R., and Chang, L. (2018). Voltage-reference active power decoupling based on boost converter for single-phase bridge inverter. In 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 1793–1798. doi: 10.23919/IPEC.2018.8507875.
- Zhong, Q.C., Ming, W.L., Cao, X., and Krstic, M. (2016). Control of ripple eliminators to improve the power quality of dc systems and reduce the usage of electrolytic capacitors. IEEE Access, 4, 2177–2187. doi: 10.1109/ACCESS.2016.2561269.