Meléndez-Pérez, René | Universidad Nacional Autónoma de México |
Moreno, Jaime A. | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2024.020
Resumen: This paper presents a methodology for the design of observers for a family of Linear Time Varying systems with a single output satisfying a differential uniform observability property. To address the problem, an immersion of the original system in a higher-dimensional state space is proposed, where a bl-homogeneity (homogeneity in the bi-limit) based state observer is designed with theoretically exact convergence in finite-time. Furthermore, it is shown that, according to the selection of a set of parameters and gains, the convergence is in fixed-time.
¿Cómo citar?
Meléndez Pérez, R. & Moreno, J.A. (2024). Bl-homogeneous observers for differentially uniformly observable LTV systems with a single output. Memorias del Congreso Nacional de Control Automático 2024, pp. 114-119. https://doi.org/10.58571/CNCA.AMCA.2024.020
Palabras clave
Observers, homogeneity, linear systems, immersion
Referencias
- Andrieu, V., Praly, L., and Astolfi, A. (2008). Homogeneous approximation, recursive observer design, and output feedback. SIAM Journal on Control and Optimization, 47(4), 1814–1850.
- Back, J. and Seo, J.H. (2004). Immersion of non-linear systems into linear systems up to output injection: Characteristic equation approach. International Journal of Control, 77(8), 723–734.
- Bhat, S.P. and Bernstein, D.S. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 38(3), 751–766.
- Chai, W., Loh, N.K., and Hu, H. (1991). Observer design for time-varying systems. International Journal of Systems Science, 22(7), 1177–1196.
- Cruz-Zavala, E., Moreno, J.A., and Fridman, L. (2010). Uniform second-order sliding mode observer for mechanical systems. In 2010 11th International Workshop on Variable Structure Systems (VSS), 14–19.
- Cruz-Zavala, E., Moreno, J.A., and Fridman, L.M. (2011). Uniform robust exact differentiator. IEEE Transactions on Automatic Control, 56(11), 2727–2733.
- Filippov, A.F. (1988). Differential Equations with Discontinuous Righthand Side, volume 18. Springer Science & Business Media.
- Jiménez-Rodríguez, E., Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M., and Loukianov, A.G. (2020). A lyapunov-like characterization of predefined-time stability. IEEE Transactions on Automatic Control, 65(11), 4922–4927.
- Jouan, P. (2003). Immersion of nonlinear systems into linear systems modulo output injection. SIAM Journal on Control and Optimization, 41(6), 1756–1778.
- Kamen, E. (2010). Fundamentals of linear time-varying systems. In W.S. Levine (ed.), Control system advanced methods, 31 – 33. CRC Press.
Levine, J. and Marino, R. (1986). Nonlinear system immersion, observers and finite-dimensional filters. Systems & Control Letters, 7(2), 133–142. - Li, L.T. and Duan, G.R. (2017). Observer design for a class of linear time-varying systems. In 2017 36th Chinese Control Conference (CCC), 116–121.
- Meléndez-Pérez, R., Moreno, J.A., and Fridman, L. (2024). Bl-homogeneous sliding-mode observers for siso linear time-varying systems with an unknown input. Journal of the Franklin Institute, 361(4), 106647.
- Moreno, J.A. (2022). Arbitrary-order fixed-time differentiators. IEEE Transactions on Automatic Control, 67(3), 1543–1549.
- Moreno, J.A. (2023). High-order sliding-mode functional observers for multiple-input multiple-output (mimo) linear time-invariant systems with unknown inputs. International Journal of Robust and Nonlinear Control, 33(15), 8844–8869.
- Nguyen, C.C. (1986). Canonical transformation for a class of time-varying multivariable systems. International Journal of Control, 43(4), 1061–1074.
- Nguyen, C. and Lee, T. (1985). Design of a state estimator for a class of time-varying multivariable systems. IEEE Transactions on Automatic Control, 30(2), 179–182.
- Polyakov, A. (2012). Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 57(8), 2106–2110.
- Rotella, F. and Zambettakis, I. (2013). On functional observers for linear time-varying systems. IEEE Transactions on Automatic Control, 58(5), 1354–1360.
- Shafai, B. and Carroll, R. (1986). Minimal-order observer designs for linear time-varying multivariable systems. IEEE Transactions on Automatic Control, 31(8), 757–761.
- Shieh, L., Ganesan, S., and Navarro, J. (1987). Transformations of a class of time-varying multivariable control systems to block companion forms. Computers & Mathematics with Applications, 14(6), 471–477.
- Silverman, L.M. and Meadows, H.E. (1967). Controllability and observability in time-variable linear systems. SIAM Journal on Control, 5(1), 64–73.
- Sontag, E.D. (1998). Mathematical control theory: deterministic finite dimensional systems (2nd ed.). Springer-Verlag, Berlin, Heidelberg.
- Sánchez-Torres, J.D., Gómez-Gutiérrez, D., López, E., and Loukianov, A.G. (2018). A class of predefined-time stable dynamical systems. IMA Journal of Mathematical Control and Information, 35(1), I1 – I29.
- Trumpf, J. (2007). Observers for linear time-varying systems. Linear Algebra and its Applications, 425(2).
Valasek, M. and Olgac, N. (1995). Pole placement for mimo time-varying non-lexicographic-fixed linear systems. In Proceedings of 1995 34th IEEE Conference on Decision and Control, volume 4, 4368–4373 vol.4. - Weiss, L. (1965). The concepts of differential controllability and differential observability. Journal of Mathematical Analysis and Applications, 10(2), 442–449.
- Zhang, Q. (2002). Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Transactions onAutomatic Control, 47(3), 525–529.
- Zhang, Q. and Clavel, A. (2001). Adaptive observer with exponential forgetting factor for linear time varying systems. In Proceedings of the 40th IEEE Conference on Decision and Control, volume 4, 3886–3891 vol.4.