Pulido Luna, Jesus Rogelio | TecNM/Instituto Tecnológico De Tijuana |
López Rentería, Jorge Antonio | TecNM/Instituto Tecnológico De Tijuana |
Cazarez-Castro, Nohe R. | TecNM/Instituto Tecnológico De Tijuana |
Resumen: In this work, a control law for a master-slave synchronization scheme is proposed in order to synchronize different non-homogeneous systems with chaotic behaviour. The proposed control law is designed using the error state feedback with a Lyapunov function to guarantee stability. Also, the control law is used to synchronize two systems with different number of scrolls in their dynamics and defined in one or multiple pieces.
Total descargados hasta ahora
142 Downloads
¿Cómo citar?
Jesus R. Pulido–Luna, Jorge A. L´opez–Rentería & Nohe R. Cazarez–Castro. Chaos Synchronization by an Observer-Based Active Control. Memorias del Congreso Nacional de Control Automático, pp. 720-725, 2019.
Palabras clave
Sincronización de sistemas, Sistemas Caóticos
Referencias
- Agiza, H. and Yassen, M. (2001). Synchronization of rossler and chen chaotic dynamical systems using active control. Physics Letters A, 278, 191–197.
- Aguirre-Hernández, B., Campos-Cantón, E., López Rentería, J., and Díaz, E. (2015). A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems. Chaos, Solitons and Fractals, 71, 100–106.
- Campos-Cantón, E., Femat, R., and Chen, G. (2012). Attractors generated from switching unstable dissipative systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22.
- Celikovsk´y, S. and Chen, G. (2002). On a generalized ˆ lorenz canonical form of chaotic systems. International Journal of Bifurcation and Chaos, 12, 1789–1812.
- Chua, L., Komuro, M., and Matsumoto, T. (1986). The double scroll family. IEEE Transactions on circuits and systems, 33, 1073–1118.
- Devaney, R. (1989). An Introduction to Chaotic Dynamical Systems. Addison–Wesley Publishing, 135.
- Díaz-González, E., Aguirre-Hernández, B., López Rentería, J., Campos-Cantón, E., and LoredoVillalobos, C. (2017). Stability and multiscroll attractors of control systems via the abscissa. Mathematical Problems in Engineering, 2017, 1–9.
- Díaz-González, E., López-Rentería, J., Campos-Cantón, E., and Aguirre-Hernández, B. (2016). Maximal unstable dissipative interval to preserve multi-scroll attractors via multi–saturated functions. Journal of Nonlinear Science, 13, 2889–2903.
- Li, Z., Chen, G., and Halang, W. (2004). Homoclinic and heteroclinic orbits in a modified lorenz system. Information Sciences, 165, 235–245.
- Lorenz, E. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130–141.
- Mahmoud, G., Bountis, T., and Mahmoud, E. (2007). Active control and global synchronization of the complex chen and l¨u systems. International Journal of Bifurcation and Chaos, 17(12), 4295–4308.
- Mees, A. and Chapman, P. (1987). Homoclinic and heteroclinic orbits in the double scroll attractor. IEEE Transactions on circuits and systems, 34, 1115–1120.
- Mkaouar, H. and Boubaker, O. (2012). Chaos synchronization for master slave piecewise linear systems: Application to chua’s circuit. Communications in Nonlinear Science and Numerical Simulation, 17, 1292–1302.
- Oancea, S., Grosu, F., Lazar, A., and Grosu, I. (2009). Master–slave synchronization of lorenz systems using a single controller. Chaos, Solitons and Fractals, 41, 2575–2580.
- Silva, C. (1993). Shilnikov’s theorem–a tutorial. IEEE Transactions on circuits and systems, 40, 675–682.
- Wu, X., Chen, G., and Cai, J. (2007). Chaos synchronization of the master–slave generalized lorenz systems via linear state error feedback control. Physica D, 229, 52–80.
- Yassen, M. (2005). Chaos synchronization between two different chaotic systems using active control. Chaos, Solitons and Fractals, 23, 131–140.
- Zhang, T. and Feng, G. (2007). Output tracking of piecewise–linear systems via error feedback regulator with application to synchronization of nonlinear chua’s circuit. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(8), 1852–1863.