Peña-Lopez, Gerardo | Universidad Politécnica de Yucatán |
Benítez-Perez, Héctor | Universidad Autónoma de México |
May Tzuc, Oscar de Jesus | Universidad Autónoma de Campeche |
Mendez Monroy, Paul Erick | Universidad Autónoma de Campeche |
https://doi.org/10.58571/CNCA.AMCA.2024.034
Resumen: In this paper, we present a proposed toolbox designed to calculate the tuning parameters of the current-mode lead-lag phase controller of a boost converter. This toolbox uses user-supplied specifications, such as electronic components, operating values, and step response parameters. Unlike heuristic or numerical optimization techniques, the tuning methodology offers a unique solution for tuning the controller parameters, which is simple to automate. In addition, the toolbox provides simulations and reports on controller tuning parameters. It alsopresents graphs of the step response, Bode diagram, and control signal. This toolbox stands out due to its validation through implementation on an analog design development board for didactic purposes. In this way, it proves to be a valuable tool for teaching and learning in the field of power electronics and classical control systems.
¿Cómo citar?
Peña Lopez, G., Benitez Perez, H., May Tzuc, O.J. & Mendez Monroy, P.E. (2024). Circuit implementation and optimisation for current-mode control of DC-DC converters using the lead-lag control technique. Memorias del Congreso Nacional de Control Automático 2024, pp. 196-201. https://doi.org/10.58571/CNCA.AMCA.2024.034
Palabras clave
Boost DC-DC converter, Phase lead-lag controller, Toolbox lead-lag Control, App Designer Matlab
Referencias
- Anil, G., Murugan, N., and Ubaid, M. (2013). Pi controller based mppt for a pv system. IOSR Journal of Electrical and Electronics Engineering, 6(5), 10–15.
- Dinniyah, F.S., Wahab, W., and Alif, M. (2017). Simulation of buck-boost converter for solar panels using pid controller. Energy Procedia, 115, 102–113.
- Karanjkar, D.S., Chatterji, S., Kumar, A., and Shimi, S.L. (2012). Performance analysis of fractional order cascade controller for boost converter in solar photovoltaic system. In 2012 Nirma University International Conference on Engineering (NUiCONE), 1–6.
- Muñiz-Montero, C., Sánchez Gaspariano, L., Sanchez-Lopez, C., Gonzalez-Diaz, V., and Tlelo-Cuautle, E. (2016). On the electronic realizations of fractional-order phase-lead-lag compensators with OpAmps and FPAAs (versión preliminar-Springer ”Fractional Order Control and Synchronization of Chaotic Systems”).
- Nagarajan, R., Chandramohan, J., Sathishkumar, S., Anantharaj, S., Jayakumar, G., Visnukumar, M., and Viswanathan, R. (2016). Implementation of pi controller for boost converter in pv system. International Journal of Advanced Research in Management, Architecture, Technology and Engineering, 2(12), 6–10.
- Nise, N.S. (2011). Control Systems Engineering, 6th Edition. Wiley. ISBN 978-0-470-91373-4.
- Shabrina, H.N., Setiawan, E.A., and Sabirin, C.R. (2017). Designing of new structure pid controller of boost converter for solar photovoltaic stability. In AIP Conference Proceedings, 1826(1), 20–26.
- Sira-Ramirez, H. and Silva-Ortigoza, R. (2006). Control Design Techniques in Power Electronics Devices, volume 4 of Power Systems. TSpringer-Verlag London.
- Utkin, V. (2013). Sliding mode control of dc/dc converters. Journal of the Franklin Institute, 350(8), 2146–2165.
- Wang, F.Y. (2003). The exact and unique solution for phase-lead and phase-lag compensation. IEEE Transactions on Education, 46(2), 258–262. doi: 10.1109/TE.2002.808279.
- Xiao, W., Lei, L., Chen, Q., Zhang, L., and Quan, S. (2017). Sliding mode control of a phase shifted full bridge dc/dc converter. In 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), 138–142.