Andrés Parra-Marín† | CINVESTAV |
Eduardo Aranda-Bricaire | CINVESTAV |
Jaime González-Sierra | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2022.080
Resumen: This paper addresses the collision avoidance problem for a group of two second-order mobile robots. The proposed control strategy is composed of a part that achieves a desired formation, based on the Fundamental Consensus Algorithm, which ensures that agents converge to the desired formation. On the other hand, Artificial Vector Fields (AVF) are used for collision avoidance. Furthermore, a parameter is designed to allow an adequate scaling of the AVF and to ensure non-collision. Numerical simulations are presented to validate the performance of the proposed control strategy.
¿Cómo citar?
Parra-Marín, A., Aranda-Bricaire, E. & González-Sierra, J. Collision avoidance for second-order mobile robots. Memorias del Congreso Nacional de Control Automático, pp. 480-485, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.080
Palabras clave
Sistemas Multi-Agente
Referencias
- Flores-Resendiz, J.F. and Aranda-Bricaire, E. (2014). Cyclic pursuit formation control without collisions in multiagent systems using discontinuous vector fields. Congreso Latinoamericano de Control Automático, Cancún, México, 941–946.
- Flores-Resendiz, J.F. and Aranda-Bricaire, E. (2019). A general solution to the formation control problema without collisions for fist-order multi-agent systems. Robotica, 38, 1–15.
- Flores-Resendiz, J.F., Aranda-Bricaire, E., González-Sierra, J., and Santiaguillo-Salinas, J. (2015). Finitetime formation control without collisions for multiagent systems with communication graphs composed of cyclic paths. Mathematical Problems in Engineering, 2015, 1–17.
- Godsil, C. and Royle, G. (2001). Algebraic graph theory. Graduate Texts in Mathematics, Springer, New York, NY, USA, 207.
- Hernández -Martínez, E.G. and Aranda-Bricaire, E. (2011). Convergence and Collision Avoidance in Formation Control: A Survey of the Artificial Potential Functions Approach, 103–126. IntechOpen, London, United Kingdom.
- Hirsch, M.W. and Smale, S. (1974). Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York.
- Khatib, O. (1990). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, 396–404. Springer New York, New York, NY.
- Perko, L. (2001). Differential equations and dynamical systems. Springer-Verlag, New York.
- Ren, W. and Beard, R. (2008). Distributed consensus in multi-vehicle cooperative control:theory and applications. Communications and Control Engineering Series, Springer, London, UK.