F. Aguirre | Universidad Autónoma del Estado de Quintana |
J.O. Aguilar | Universidad Autónoma del Estado de Quintana |
J. Vazquez | Universidad Autónoma del Estado de Quintana |
F. Chan | Universidad Autónoma del Estado de Quintana |
G. Becerra | CONACYT-Universidad Autónoma del Estado de Quintana |
J.D. Avilés | Universidad Autónoma de Baja California |
M. Benitez | Instituto Tecnológico Superior de Pur´ısima del Rincón |
https://doi.org/10.58571/CNCA.AMCA.2022.063
Resumen: This paper describes the comparison of some control algorithms applied to nonlinear dynamics of the electric machine model, which uses the Park transformation for its simplified representation. The applied controllers focus on passivity designs, sliding modes as well as linearization. The objective of the comparison is to identify the most appropriate design for the user’s application, where the gains of the control algorithms are modified, which is reflected in the response of the system as well as the energy consumption, which in most works it is not parsed. En el presente trabajo se describe la comparación de algunos algoritmos de control aplicados a las dinámicas no lineales del modelo de la máquina eléctrica, el cual, utiliza la transformación de Park para la representación simplificada de la misma. Los controladores aplicados se enfocan en los diseños de pasividad, modos deslizantes ası́ como linelización. El objetivo de la comparación es identificar el diseño más apropiado para la aplicación del usuario, donde se modifican las ganancias de los algoritmos de control, lo cual se refleja en la respuesta del sistema ası́ como el consumo de energı́a, que en la mayorı́a de trabajos no se analiza.
¿Cómo citar?
F. Aguirre, G. Becerra, J.D. Avilés, M. Benitez, J.O. Aguilar, J. Vazquez & F. Chan. Comparison of control algorithms for a PMSM electrical machine. Memorias del Congreso Nacional de Control Automático, pp. 416-420, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.063
Palabras clave
Control de Sistemas No Lineales; Control Basado en pasividad; Control Discontinuo (modos deslizantes)
Referencias
- Chapman, S.J. (2012). Electric Machinery Fundamentals. McGraw-Hill, New York, 5 edition.
- Coronado, A., De La Guerra, A., y Alvarez-Icaza, L. (2021). Implementation of a bldc motor observer scheme using the instaspin platform. In 2021 18th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–4. doi:10.1109/CCE53527.2021.9633107.
- Dhaouadi, R., Mohan, N., y Norum, L. (1991). Design and implementation of an extended kalman filter for the state estimation of a permanent magnet synchronous motor. IEEE Transactions on Power Electronics, 6(3), 491–497. doi:10.1109/63.85891.
- Ding, H., Zou, X., y Li, J. (2022). Sensorless control strategy of permanent magnet synchronous motor based on fuzzy sliding mode observer. IEEE Access, 10, 36743–36752. doi:10.1109/ACCESS.2022.3164519.
- Grcar, B., Cafuta, P., Znidaric, M., y Gausch, F. (1996). Nonlinear control of synchronous servo drive. IEEE Transactions on Control Systems Technology, 4(2), 177–184. doi:10.1109/87.486344.
- Grzesiak, L.M. y Kazmierkowski, M.P. (2007). Improving flux and speed estimators for sensorless ac drives. IEEE Industrial Electronics Magazine, 1(3), 8–19. doi: 10.1109/MIE.2007.901483.
- Huynh, T.A. y Hsieh, M.F. (2018). Performance analysis of permanent magnet motors for electric vehicles (ev) traction considering driving cycles. Energies, 11(6). doi:10.3390/en11061385. URL https://www.mdpi.com/1996-1073/11/6/1385.
- Irasari, P., Wirtayasa, K., Widiyanto, P., Hikmawan, M.F., y Kasim, M. (2021). Characteristics análisis of interior and inset type permanent magnet motors for electric vehicle applications. Journal of Mechatronics, Electrical Power, and Vehicular Technology, 12(1), 1–9. doi:10.14203/j.mev.2021.v12.1-9. URL https://mev.lipi.go.id/mev/article/view/520.
- Janiszewski, D. (2012). Unscented kalman filter for sensorless pmsm drive with output filter fed by pwm converter. In IECON 2012 – 38th Annual Conference on IEEE Industrial Electronics Society, 4660–4665. doi:10.1109/IECON.2012.6389495.
- Kazmierkowski, M.P., Franquelo, L.G., Rodriguez, J., Perez, M.A., y Leon, J.I. (2011). High-performance motor drives. IEEE Industrial Electronics Magazine, 5(3), 6–26. doi:10.1109/MIE.2011.942173.
- Khalil, H.K. (1996). Nonlinear systems. Prentice-Hall, Michigan State University, 2 edition. Lai, C., Feng, G., Mukherjee, K., y Kar, N.C. (2017). Investigations of the influence of pmsm parameter variations in optimal stator current design for torque ripple minimization. IEEE Transactions on Energy Conversion, 32(3), 1052–1062. doi:10.1109/TEC.2017.2682178.
- Li, Y., Zhao, C., Zhou, Y., y Qin, Y. (2020). Model predictive torque control of pmsm based on data drive. Energy Reports, 6, 1370–1376. doi: https://doi.org/10.1016/j.egyr.2020.11.019. 2020 The 7th International Conference on Power and Energy Systems Engineering.
- Ramírez-Leyva, F., Peralta-Sánchez, E., Vásquez-Sanjuan, J., y Trujillo-Romero, F. (2013). Passivitybased speed control for permanent magnet motors. Procedia Technology, 7, 215–222. doi: https://doi.org/10.1016/j.protcy.2013.04.027. 3rd Iberoamerican Conference on Electronics Engineering and Computer Science, CIIECC 2013.
- Urbanski, K. y Janiszewski, D. (2019). Sensorless control of the permanent magnet synchronous motor. Sensors, 19(16). doi:10.3390/s19163546. URL https://www.mdpi.com/1424-8220/19/16/3546.
- Zhou, Z., Yao, S., Ma, C., Zhang, G., y Geng, Q. (2022). Design of high-dynamic pmsm servo drive using nonlinear predictive controller with harmonic disturbance observer. Energies, 15(11). doi:10.3390/en15114107. URL https://www.mdpi.com/1996-1073/15/11/4107.