Flores-Resendiz, Juan Francisco | Universidad Autónoma de Baja California |
González-Sierra, Jaime | Instituto Politécnico Nacional |
Aranda-Bricaire, Eduardo | CINVESTAV-IPN |
https://doi.org/10.58571/CNCA.AMCA.2023.059
Resumen: This work compares two novel strategies that address formation control with collision avoidance for a group of second-order agents. The first control strategy is based on the Backstepping approach (B), while the second is based on the Nested Saturation methodology (NS). Both approaches utilize the Repulsive Vector Fields (RVFs) approach for avoiding collisions. Two numerical simulations are carried out to compare the performance of both approaches. For the first numerical simulation, the simplest case of collision avoidance is considered, that is, the interchange of the position of two agents. On the other hand, for the second numerical simulation, the formation with collision avoidance for a group of nine agents is considered.

¿Cómo citar?
Flores-Resendiz, Juan Francisco; González-Sierra, Jaime; Aranda-Bricaire, Eduardo. Comparison of Formation Algorithms with Collision Avoidance for Second-Order Agents. Memorias del Congreso Nacional de Control Automático, pp. 467-472, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.059
Palabras clave
Sistemas Multi-Agente; Control de Sistemas Lineales; Robótica y Mecatrónica
Referencias
- Aranda-Bricaire, E. and Gonz´alez-Sierra, J. (2023). Formation with non-collision control strategies for secondorder multi-agent systems. Entropy, 25(6). doi:10.3390/e25060904.
- Dang, A.D., La, H.M., Nguyen, T., and Horn, J. (2019). Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force–based approach. International Journal of Advanced Robotic Systems, 16(3). doi:10.1177/1729881419847897.
- Draganjac, I., Miklic, D., Kovaˇci´c, Z., Vasiljevic, G., and Bogdan, S. (2016). Decentralized control of multi-agv systems in autonomous warehousing applications. IEEE Transactions on Automation Science and Engineering, 13(4), 1433-1447. doi:10.1109/TASE.2016.2603781.
- Flores-Resendiz, J.F. and Aranda-Bricaire, E. (2020). A general solution to the formation control problem without collisions for first order multi-agent systems. Robotica, 38(6), 1123-1137. doi:10.1017/S0263574719001280.
- Flores-Resendiz, J.F., Aranda-Bricaire, E., Gonzalez- Sierra, J., and Santiaguillo-Salinas, J. (2015). Finitetime formation control without collisions for multiagent systems with communication graphs composed of cyclic paths. Mathematical Problems in Engineering, 1-17. doi:https://doi.org/10.1155/2015/948086.
- Flores-Resendiz, J.F., Aviles, D., and Aranda-Bricaire, E. (2023). Formation control for second-order multi-agent systems with collision avoidance. Machines, 11(2). doi:10.3390/machines11020208. URL https://www.mdpi.com/2075-1702/11/2/208.
- Godsil, C. and Royle, G. (2001). Algebraic graph theory. Graduate Texts in Mathematics, Springer, New York, NY, USA, 207.
- Guanghua,W., Deyi, L.,Wenyan, G., and Peng, J. (2013). Study on formation control of multi-robot systems. In 2013 Third International Conference on Intelligent System Design and Engineering Applications, 1335-1339. doi:10.1109/ISDEA.2012.316.
- Hernandez-Martinez, E. and Aranda-Bricaire, E. (2013). Collision avoidance in formation control using discontinuous vector fields. IFAC Proceedings Volumes, 46(23), 797-802. doi:https://doi.org/10.3182/20130904-3-FR-2041.00175.
- Hernandez-Martinez, E.G. and Aranda-Bricaire, E. (2011). Convergence and collision avoidance in formation control: A survey of the artificial potential functions approach. In F. Alkhateeb, E.A. Maghayreh, and I.A. Doush (eds.), Multi-Agent Systems, chapter 6, 103-126. IntechOpen. doi:10.5772/14142.
- Huang, S., Teo, R.S.H., and Tan, K.K. (2019). Collision avoidance of multi unmanned aerial vehicles: A review. Annual Reviews in Control, 48, 147-164. doi:https://doi.org/10.1016/j.arcontrol.2019.10.001.
- Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In 1985 IEEE International Conference on Robotics and Automation, volume 2, 500-505. doi:10.1109/ROBOT.1985.1087247.
- Liu, J., Zhao, M., and Qiao, L. (2022). Adaptive barrier lyapunov function-based obstacle avoidance control for an autonomous underwater vehicle with multiple static and moving obstacles. Ocean Engineering, 243, 110303. doi:10.1016/j.oceaneng.2021.110303.
- Madridano, A., Al-Kaff, A., Martín, D., and de la Escalera, A. (2021). Trajectory planning for multirobot systems: Methods and applications. Expert Systems with Applications, 173, 114660. doi:https://doi.org/10.1016/j.eswa.2021.114660.
- Park, B.S. and Yoo, S.J. (2021). Connectivitymaintaining and collision-avoiding performance function approach for robust leader–follower formation control of multiple uncertain underactuated surface vessels. Automatica, 127(C). doi:10.1016/j.automatica.2021.109501.
- Parra-Martín, A., Aranda-Bricaire, E., and González-Sierra, J. (2023). Collision avoidance for secondorder mobile robots. Memorias del Congreso Nacional de Control Automático, Tuxtla Gutiérrez, Chiapas, México, 469-474.
- Ren, W. and Beard, R.W. (2008). Distributed consensus in multi-vehicle cooperative control:theory and applications. Communications and Control Engineering Series, Springer, London, UK.
- Teel, A.R. (1992). Global stabilization and restricted tracking for multiple integrators with bounded controls. Systems & Control Letters, 18, 165-171.
- Yan, L. and Ma, B. (2019). Practical formation tracking control of multiple unicycle robots. IEEE Access, 7, 113417– doi:10.1109/ACCESS.2019.2931750.
- Yasin, J.N., Mohamed, S.A.S., Haghbayan, M.H., Heikkonen, J., Tenhunen, H., and Plosila, J. (2020). Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches. IEEE Access, 8, 105139– doi:10.1109/ACCESS.2020.3000064.