Sánchez Mejía, Luis Adán | Tecnológico Nacional de México, Tuxtla Gutiérrez |
Gómez Coronel, Leonardo | Instituto de Robótica i Informática Industrial |
De los Santos Ruiz, Ildeberto | Tecnológico Nacional de México, Tuxtla Gutiérrez |
Gómez-Peñate, Samuel | Tecnológico Nacional de México, Tuxtla Gutiérrez |
https://doi.org/10.58571/CNCA.AMCA.2024.013
Resumen: This article presents a comparison between three different metaheuristic methods: the genetic algorithm (GA), the simulated annealing (SA), and the particle swarm optimization (PSO) in an experimental setup for leak diagnosis in a water distribution network. First a detection stage estimates the value of the flow-rate residual between the input and the output of the water distribution network until it exceeds a preestablished threshold value. The estimated value of the leak is analyzed during a previous time window and when its value is stable around a constant value a detection alert is emitted. Then, an optimization algorithm is implemented. A cost function with two search variables (location and magnitude of the leak) is then defined. The optimization of the cost function is performed using the three metaheuristic methods. Finally, results using experimental data are presented: the computing time of each metaheuristic method, the estimated leaked outflow and the success/failure rate for each method.
¿Cómo citar?
Sánchez Mejía, L.A., Gómez Coronel, L., Santos Ruiz, I. & Gómez Peñate, S. (2024). Comparison of Three Metaheuristics for Leak Diagnosis in Water Distribution Networks. Memorias del Congreso Nacional de Control Automático 2024, pp. 73-78. https://doi.org/10.58571/CNCA.AMCA.2024.013
Palabras clave
Leak Diagnosis, Metaheuristics, Water Distribution Network, Optimization, Parameter Estimation
Referencias
- Cuevas, E., Fausto, F., Gálvez, J., and Rodríguez, A. (2021). MATLAB: Computación metaheurística y bio-inspirada. Alpha Editorial.
- Gómez-Coronel, L., Santos-Ruiz, I., Torres, L., López-Estrada, F., and Delgado-Aguinaga, J. (2022). Model calibration for a hydraulic network using genetic algorithms. Memorias del Congreso Nacional de Control Automático, 146–251. doi: https://doi.org/10.58571/CNCA.AMCA.2022.015.
- Gómez-Coronel, L., Delgado-Aguiñaga, J.A., Santos-Ruiz, I., and Navarro-Díaz, A. (2023). Estimation of chlorine concentration in water distribution systems based on a genetic algorithm. Processes, 11(3). doi: 10.3390/pr11030676.
- Katoch, S., Chauhan, S.S., and Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80(5), 8091–8126. doi:10.1007/s11042-020-10139-6.
- Keramat, A., Ahmadianfar, I., Duan, H.F., and Hou, Q. (2023). Spectral transient-based multiple leakage identification in water pipelines: An efficient hybrid gradient-metaheuristic optimization. Expert Systems with Applications, 224, 120021. doi: https://doi.org/10.1016/j.eswa.2023.120021.
- Mirjalili, S. (2018). Evolutionary Algorithms and Neural Networks, volume 156 of Studies in Computational Intelligence. Springer Cham, 1 edition. doi:10.1007/978-3-319-93025-1. Published: 12 July 2018 (Hardcover), 26 June 2018 (eBook), 19 January 2019 (Softcover).
- Mirjalili, S. (2019). Genetic Algorithm, 43–55. Springer International Publishing, Cham. doi:10.1007/978-3-319-93025-1 4.
- Morales-González, I.O., Santos-Ruiz, I., López-Estrada, F.R., and Puig, V. (2021). Pressure sensor placement for leak localization using simulated annealing with hyperparameter optimization. In 2021 5th International Conference on Control and Fault-Tolerant Systems (SysTol), 205–210. doi: 10.1109/SysTol52990.2021.9595369.
- Quiñones-Grueiro, M., Ares Milián, M., Sánchez Rivero, M., Silva Neto, A.J., and Llanes-Santiago, O. (2021). Robust leak localization in water distribution networks using computational intelligence. Neurocomputing, 438, 195–208. doi: https://doi.org/10.1016/j.neucom.2020.04.159.
- Rostami, I. and Darvishi, E. (2021). Combining inverse solution method and meta-heuristic algorithm to calculate the amount and location of leaks in water distribution networks. Irrigation and Water Engineering, 11(4), 87–104. doi:10.22125/iwe.2021.133686.
- Sánchez-Rivero, M., Quiñones-Grueiro, M., Rosete Suárez, A., and Llanes Santiago, O. (2020). A novel approach for leak localization in water distribution networks using computational intelligence. In Computational Intelligence in Emerging Technologies for Engineering Applications, 103–122. Springer.
- Santa Chávez, J.J., Meneses, C.A.P., and Echeverry, M.G. (2014). Algoritmo de recocido simulado aplicado al problema de secuenciamiento regular. Avances Investigación en Ingeniería, 11(1), 9–17.
- Shahhosseini, A., Najarchi, M., Mahdi Najafizadeh, M., and Mirhoseini Hezaveh, M. (2023). Performance optimization of water distribution network using meta-heuristic algorithms from the perspective of leakage control and resiliency factor (case study: Tehran water distribution network, iran). Results in Engineering, 20, 101603. doi: https://doi.org/10.1016/j.rineng.2023.101603.
- Yousefi-Khoshqalb, E., Nikoo, M.R., and Gandomi, A.H. (2023). Chapter 14 – optimal deployment of sensors for leakage detection in water distribution systems using metaheuristics. In S. Mirjalili and A.H. Gandomi (eds.), Comprehensive Metaheuristics, 269–291. Academic Press. doi:https://doi.org/10.1016/B978-0-323-91781-0.00014-4.
- Ávila, C.A.M., Sánchez-Romero, F.J., López-Jiménez, P.A., and Pérez-Sánchez, M. (2022). Improve leakage management to reach sustainable water supply networks through by green energy systems. optimized case study. Sustainable Cities and Society, 83, 103994. doi: https://doi.org/10.1016/j.scs.2022.103994