Cruz-Ancona, Christopher D. | Universidad Autónoma Nacional De México |
Fridman, Leonid M. | Universidad Autónoma Nacional De México |
Resumen: Dentro del problema clásico de consenso promedio de nodos integradores perturbados, se investiga el uso de controladores adaptables por modos deslizantes integrales continuos. Considerando que la perturbación tiene derivada respecto al tiempo con cota desconocida, y que el grafo de comunicación es conexo, se propone un controlador adaptable super-twisting basado en la función barrera en combinación con el algoritmo clásico de consenso promedio. Esta configuración asegura la convergencia de los estados de cada agente a una vecindad de radio prescrito del valor de consenso promedio, además satisface las características clásicas de los protocolos de consenso y previene la sobrestimación de las ganancias del controlador robustificante ante una clase de perturbaciones.
¿Cómo citar?
Christopher D. Cruz-Ancona & Leonid Fridman. Consenso Promedio en Nodos Integradores Perturbados: Enfoque de la Función Barrera en Modos Deslizantes Integrales Continuos. Memorias del Congreso Nacional de Control Automático, pp. 552-557, 2019.
Palabras clave
Sistemas Multi-Agente, Control Discontinuo (modos deslizantes), Control Robusto
Referencias
- Chalanga, A. and Plestan, F. (2017). Finite time stabilization of an uncertain chain of integrators by integral sliding mode approach. IFAC-PapersOnLine, 50(1), 9613–9618.
- Cortés, J. (2006). Finite-time convergent gradient flows with applications to network consensus. Automatica, 42(11), 1993–2000.
- Davila, J. and Pisano, A. (2016). Fixed-time consensus for a class of nonlinear uncertain multi-agent systems. In 2016 American Control Conference (ACC), 3728–3733. IEEE.
- Dörfler, F. and Bullo, F. (2014). Synchronization in complex networks of phase oscillators: A survey. Automatica, 50(6), 1539–1564.
- Guan, Z.H., Sun, F.L., Wang, Y.W., and Li, T. (2012). Finite-time consensus for leader-following second-order multi-agent networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(11), 2646–2654.
- Hui, Q., Haddad, W.M., and Bhat, S.P. (2010). Finitetime semistability, filippov systems, and consensus protocols for nonlinear dynamical networks with switching topologies. Nonlinear Analysis: Hybrid Systems, 4(3), 557–573.
- Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International journal of control, 58(6), 1247–1263.
- Menon, P.P. and Edwards, C. (2010). A discontinuous protocol design for finite-time average consensus. In 2010 IEEE International Conference on Control Applications, 2029–2034. IEEE.
- Moreau, L. (2004). Stability of continuous-time distributed consensus algorithms. In 2004 43rd IEEE conference on decision and control (CDC)(IEEE Cat. No. 04CH37601), volume 4, 3998–4003. IEEE.
- Negrete-Chávez, D.Y. and Moreno, J.A. (2016). Secondorder sliding mode output feedback controller with adaptation. International Journal of Adaptive Control and Signal Processing, 30(8-10), 1523–1543.
- Nijmeijer, H. and Rodriguez-Angeles, A. (2003). Synchronization of mechanical systems, volume 46. World Scientific.
- Obeid, H., Fridman, L., Laghrouche, S., and Harmouche, M. (2018a). Barrier function-based adaptive integral sliding mode control. In 2018 IEEE Conference on Decision and Control (CDC), 5946–5950. IEEE.
- Obeid, H., Fridman, L., Laghrouche, S., Harmouche, M., and Golkani, M.A. (2018b). Adaptation of levant’s differentiator based on barrier function. International Journal of Control, 91(9), 2019–2027.
- Olfati-Saber, R. and Murray, R.M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on automatic control, 49(9), 1520–1533.
- Pikovsky, A., Rosenblum, M., Kurths, J., and Kurths, J. (2003). Synchronization: a universal concept in nonlinear sciences, volume 12. Cambridge university press.
- Ren, W., Beard, R.W., and Atkins, E.M. (2007). Information consensus in multivehicle cooperative control. IEEE Control systems magazine, 27(2), 71–82.
- Shtessel, Y., Taleb, M., and Plestan, F. (2012). A novel adaptive-gain supertwisting sliding mode controller: Methodology and application. Automatica, 48(5), 759– 769.
- Strogatz, S.H. (2012). Sync: How order emerges from chaos in the universe, nature, and daily life. Hachette UK.
- Utkin, V. and Shi, J. (1996). Integral sliding mode in systems operating under uncertainty conditions. In Proceedings of 35th IEEE conference on decision and control, volume 4, 4591–4596. IEEE.
- Wang, Y., Song, Y., Hill, D.J., and Krstic, M. (2018). Prescribed-time consensus and containment control of networked multiagent systems. IEEE transactions on cybernetics, (99), 1–10.
- Wieland, P., Sepulchre, R., and Allg¨ower, F. (2011). An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 47(5), 1068–1074.
- Yu, S. and Long, X. (2015). Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica, 54, 158–165.
- Zhang, Y., Nishikawa, T., and Motter, A.E. (2017). Asymmetry-induced synchronization in oscillator networks. Physical Review E, 95(6), 062215.