Gonzalez-Olvera, Marcos A. | Universidad Autónoma De La Ciudad De México |
Tang, Yu | Universidad Nacional Autónoma De México |
Resumen: In this work it is presented a contraction analysis-based design for the synchronization of a pair of chaotic fractional order systems is presented. It allows to send encrypted information through a channel, using the chaotic sequence generated by a master system as a carrier signal to the second slave system which decrypts the message using a key signal. Contraction analysis gives a straightforward analysis design, one given for the synchronization and convergence of neighbor trajectories of both systems. Numeric examples are presented to show the effectiveness of the proposed design.
¿Cómo citar?
González-Olvera, Marcos A. & Tang, Yu. Contraction-Based Chaotic Fractional-Order System Synchronization for Message Encryption. Memorias del Congreso Nacional de Control Automático, pp. 707-712, 2019.
Palabras clave
Control de Sistemas No Lineales, Sistemas Caóticos, Sincronización de Sistemas
Referencias
- Norelys Aguila-Camacho, Manuel a. DuarteMermoud, and Javier a. Gallegos. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 19(9):2951–2957, 2014. ISSN 10075704. doi: 10.1016/j.cnsns.2014.01.022. URL http://dx.doi.org/10.1016/j.cnsns.2014.01.022.
- Sara Angulo-guzman, Cornelio Posadas-castillo, Miguel Angel Platas-garza, and David Alejandro Diaz-romero. Chaotic Synchronization of Regular and Irregular Complex Networks with Fractional Order Oscillators. International Journal of Control, Automation and Systems, 14(4):1114–1123, aug 2016. ISSN 1598-6446. doi: 10.1007/s12555-015-0168- y. URL http://link.springer.com/ 10.1007/ s12555-015-0168-y.
- Riccardo Caponetto. Fractional order systems: modeling and control applications, volume 72. World Scientific, 2010.
- Michele Caputo. Linear models of dissipation whose q is almost frequency independent-ii. Geophysical Journal International, 13(5):529–539, 1967.
- Delgado and M. A. Duarte. Synchronization of fractional-order systems of the Lorenz type: The non-adaptive case. IEEE Latin America Transactions, 12(3):410–415, 2014. ISSN 15480992. doi: 10.1109/TLA.2014.6827866.
- Lubomır Dorcák, Vladimir Lesko, and Imrich Kostial. Identification of fractional-order dynamical systems. arXiv preprint math/0204187, 2002.
- Manuel A Duarte-Mermoud, Norelys Aguila-Camacho, Javier A Gallegos, and Rafael Castro-Linares. Using general quadratic lyapunov functions to prove lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22(1):650–659, 2015.
- Marcos A González-Olvera and Yu Tang. Contraction analysis for fractional-order nonlinear systems. Chaos, Solitons & Fractals, 117:255–263, 201
- T.T. Hartley, C.F. Lorenzo, and H. Killory Qammer. Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(8):485–490, 1995. ISSN 10577122. doi: 10.1109/81.404062. URL http://ieeexplore.ieee.org/document/404062/.
- Arman Kiani-B, Kia Fallahi, Naser Pariz, and Henry Leung. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Communications in Nonlinear Science and Numerical Simulation, 14(3):863–879, 2009. ISSN 10075704. doi: 10.1016/j.cnsns.2007.11.011.
- Yan Li, YangQuan Chen, and Igor Podlubny. MittagLeffler stability of fractional order nonlinear dynamic systems. Automatica, 45(8):1965–1969, 2009. ISSN 00051098. doi: 10.1016/j.automatica.2009.04.003.
- Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683–696, 1998.
- Jun Guo Lu. Chaotic dynamics and synchronization of fractional-order arneodo’s systems. Chaos, Solitons & Fractals, 26(4):1125–1133, 2005.
- Rachid Mansouri, Maamar Bettayeb, and Said Djennoune. Approximation of high order integer systems by fractional order reduced-parameters models. Mathematical and Computer Modelling, 51(1-2):53–62, 2010.
- Gerardo Navarro-Guerrero and Yu Tang. Fractional order model reference adaptive control for anesthesia. International Journal of Adaptive Control and Signal Processing, (January):1–11, 2017. ISSN 08906327. doi: 10.1002/acs.2769. URL http://doi.wiley.com/10.1002/acs.2769.
- A Oustaloup, P Melchior, P Lanusse, O Cois, and F Dancla. The crone toolbox for matlab. In CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No. 00TH8537), pages 190–195. IEEE, 2000.
- Hao Zhu, Shangbo Zhou, and Jun Zhang. Chaos and synchronization of the fractional-order Chua’s system. Chaos, Solitons and Fractals, 39(4):1595–1603, 2009. ISSN 09600779. doi: 10.1016/j.chaos.2007.06.082. URL http://dx.doi.org/10.1016/j.chaos.2007.06.082.