Franco-Jaramillo, José Roberto | TECNM/ Instituto Tecnológico De La Laguna |
Ríos, Héctor | TECNM/ Instituto Tecnológico De La Laguna |
Ferreira de Loza, Alejandra | Instituto Politécnico Nacional |
Resumen: Este artículo afronta el problema de seguimiento robusto para cierta clase de sistemas lineales. Dado este objetivo, se propone una ley de control no lineal basada en el enfoque de Modelo de Referencia Adaptable y Modos Deslizantes Continuos. Tal enfoque está constituido de ganancias adaptables no lineales que proveen una velocidad de convergencia más rápida que la exponencial y aseguran convergencia a cero del error de seguimiento. Las pruebas de convergencia están basadas en funciones de Lyapunov. Finalmente, resultados de simulación muestran la factibilidad del esquema propuesto.
¿Cómo citar?
R. Franco, H. Ríos & A. Ferreira de Loza. Control Adaptable Usando Modelo de Referencia y Modos Deslizantes Continuos (I). Memorias del Congreso Nacional de Control Automático, pp. 213-218, 2019.
Palabras clave
Control de Sistemas Lineales, Sistemas adaptables, Control discontinuo (modos deslizantes)
Referencias
- Adetola, V. and Guay, M. (2008). Finite-time parameter estimation in adaptive control of nonlinear systems. IEEE Transactions on Automatic Control, 53(3), 807– 811.
- Astolfi, A., Karaglannis, D., and Ortega, R. (2008). Nonlinear and Adaptive Control with Applications. SpringerVerlang London UK.
- Besancon, G. and Ticlea, A. (2007). An immersion-based observer design for rank-observable nonlinear systems. IEEE Transactions on Automatic Control, 52(1), 83– 88.
- Chen, Y., Wei, Y., Liang, S., and Wang, Y. (2016). Indirect model reference adaptive control for a class of fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 39, 458–471.
- Davila, J. and Fridman, L. (September 2004). Observation and identification of mechanical systems via second order sliding modes. In 8th. International Workshop on Variable Structure Systems. Vilanova, Spain.
- Dorato, P. (1961). Short time stability in linear time varying systems. Polytechnic Institute of Brooklyn.
- Edwards, C. and Spurgeon, S. (1998). Sliding Mode Control: Theory and applications. Taylor and Francis, London.
- Gerasimov, D., Ortega, R., and Nikiforov, V. (2018). Relaxing the high-frequency gain sign assumption in direct model reference adaptive control. Eureopean Journal of Control, 43, 1–8.
- Guzman, E. and Moreno, J. (2011). New finite-time convergent and robust direct model reference adaptive control for siso linear time invariant systems. In 50th IEEE Conference on Decision and Control, 7027–7032. Florida, USA.
- Hosseinzadeh, M. and Yazdanpanah, M. (2015). Performance enhanced model reference adaptive control through switching non-quadratic Lyapunov functions. Systems and Control Letters, 76, 47–55.
- Ioannou, P.A. and Sun, J. (1996). Robust Adaptive Control. Prentice Hall, Inc., New Jersey, USA.
- Kamenkov, G. (1953). On stability of motion over a finite interval of time. Journal of Applied Mathematics Mechanics, 17, 529–540.
- Lebedev, A. (1954). The problem of stability in a finite interval of time. Journal of Applied Mathematics Mechanics, 18, 75–94.
- Narendra, K. and Annaswamy, A. (2005). Stable Adaptive Systems. Dover Publications, Mineola, NY.
- Peuteman, J. and Aeyels, D. (1999). Averaging results and the study of uniform asymptotic stability of homogeneous differential equations that are not fast timevarying. SIAM Journal Control Optimization, 37, 997– 1010.
- Ríos, H., Efimov, D., Fridman, L., Moreno, J., and Perruquetti, W. (2016a). Homogeneity based uniform stability analysis for time-varying systems. IEEE Transactions on Automatic Control, 61(3), 725–734.
- Ríos, H., Efimov, D., Moreno, J., Perruqueti, W., and Rueda-Escobedo, J. (2017). Time-varying parameter identification algorithms: Finite and fixed-time convergence. IEEE Transactions on Automatic Control, 62, 3671–3678.
- Ríos, H., Efimov, D., Polyakov, A., and Perruquetti, W. (2016b). Homogeneous time-varying systems: Robustness analysis. IEEE Transactions on Automatic Control, 61(12), 4075–4080.
- Sastry, S. and Bodson, M. (1989). Adaptive Control. Stability, Convergence and Robustness. Prentice Hall Advance Reference Series, New Jersey, USA.
- Shi, Z. and Zhao, L. (2017). Robust model reference adaptive control based on linear matrix inequality. Aerospace Science and Technology, 66, 152–159.
- Shtessel, Y., Edwards, C., Fridman, L., and Levant, A. (2014). Sliding Mode Control and Observation. Birkhauser, New York. Sun, Y., Chen, B., Lin, C., and Whang, H. (2018). Finitetime adaptive control for a class of nonlinear systems with nonstrict feedback structure. IEEE Transactions on Cybernetics, 48, 2774–2782.
- Weiss, L. and Infante, E. (1961). On the stability defined over a finite time interval. Proceedings of the National Academy of Sciences, 54, 440–448.
- Xie, J. and Zhao, J. (2018). h∞ model reference adaptive control for switched systems based on the switched closed-loop reference model. Nonlinear Analysis: Hybrid Systems, 27, 92–106.
- Yuan, S., Schutter, B., and Baldi, S. (2018). Robust adaptive tracking control of uncertain slowly switched linear systems. Nonlinear Analysis: Hybrid Systems, 27, 1–12.