A. Urquiza Castro | Instituto Politécnico Nacional |
R. Navarro Corro | Instituto Politécnico Nacional |
B. del-Muro-Cuéllar | Instituto Politécnico Nacional |
R.J. Vázquez-Guerra | Instituto Politécnico Nacional |
J.F. Márquez Rubio | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2022.016
Resumen: This paper presents a methodology to design a hybrid predictor of continuous signals to solve the stabilization problema of unstable linear systems with time delay, specifically systems with an unstable pole and a pair of stable conjugate complex poles. Among the main contributions of this work is to guarantee the existence of the predictor device, regardless of the size of the delay. To solve the stabilization problem, the necessary and sufficient conditions are obtained for a Proportional-Integral (PI) controller that can guarantee the stability of the system using the designed predictor. The performance of this control strategy is evaluated by means of a numerical simulation.
¿Cómo citar?
Urquiza Castro, A., Navarro Corro, R., del-Muro-Cuéllar, B., Vázquez-Guerra, R. & Márquez Rubio, J. Control based on a hybrid predictor for linear unstable delayed systems with a pair of complex conjugate poles. Memorias del Congreso Nacional de Control Automático, pp. 44-49, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.016
Palabras clave
Control de Sistemas Lineales
Referencias
- Buenfil, R., D.M.B. (2013). Predictor híbrido para sistemas lineales con retardo de tiempo. AMCA, 111–116.
- Del-Muro-Cuéllar, B., Márquez-Rubio, J.F., Velasco-Villa, M., and de Jesús Alvarez-Ramírez, J. (2012).
- On the Control of Unstable First Order Linear Systems with Large Time Lag: Observer Based Approach. European Journal of Control, 18(5), 439–451. doi:10.3166/ejc.18.439-451.
- Hernández -Pérez, M.A., del Muro-Cuéllar, B., and Velasco-Villa, M. (2015). PIDfor the stabilization of high-order unstable delayed systems with possible complex conjugate poles. Asia-Pacific Journal of Chemical Engineering, 10(5), 687–699. doi:10.1002/apj.1904.
- Hernández–Pérez, M., Fragoso–Rubio, V., Velasco–Villa, M., del Muro–Cuéllar, B., Márquez–Rubio, J., and Puebla, H. (2020). Prediction-based control for a class of unstable time-delayed processes by using a modified sequential predictor. Journal of Process Control, 92, 98–107. doi: 10.1016/j.jprocont.2020.05.014.
- Lai, C.L. and Hsu, P.L. (2010). Design the Remote Control System With the Time-Delay Estimator and the Adaptive Smith Predictor. IEEE Transactions on Industrial Informatics, 6(1), 73–80. doi:10.1109/tii.2009.2037917.
- Lee, S.C., Wang, Q.G., and Xiang, C. (2010). Stabilization of all-pole unstable delay processes by simple controllers. Journal of Process Control, 20(2), 235–239. doi:10.1016/j.jprocont.2009.05.005.
- Mendoza, A., Del Muro, B., Vazquez, R., and Márquez, J. (2021). Control basado en un predictor híbrido para sistemas lineales inestables retardados. AMCA.
- Márquez-Rubio, J., del Muro-Cuéllar, B., Velasco-Villa, M., and ´Alvarez Ramírez, J. (2010). Control basado en un esquema observador para sistemas de primer orden con retardo. Revista mexicana de ingeniería química, 9(1), 43–52.
- Smith, O.J.M. (1957). Closer control of loops with deadtime. Chem. Eng.
- Vazquez Rosas C. D., R.H.J. (2012). Control por computadora para sistemas inestables con grandes retardos empleando un esquema observador. Memorias del Congreso Nacional de Control Automático. doi:10.1002/asjc.415.
- Michiels, D.R. (2001). Time-delay compensation in unstable plants using delayed state feedback, in: Decision and Control. Proceedings of the 40th IEEE Conference on.