Rosario-Gabriel, Ivan | CINVESTAV |
Rodriguez Cortes, Hugoé | CINVESTAV |
Resumen: Este artículo presenta un controlador longitudinal de aeronaves inspirado en la ecuación polar de la hodógrafa, una de las invariantes de la dinámica Phugoid descrita por Lanchester. El procedimiento para el diseño del control sigue las consideraciones hechas por Lanchester para desarrollar la dinámica de Phugoid, es decir, el ángulo de ataque se considera cuasi-estático. Es posible diseñar un controlador para la dinámica longitudinal, el cual requiere conocer las características físicas de la aeronave. Las propiedades de estabilidad en lazo cerrado se basan en considerar que el coeficiente de sustentación es acotado. Se realizaron simulaciones utilizando el simulador de vuelo X-Plane para validar el controlador propuesto.
¿Cómo citar?
Ivan Rosario-Gabriel & H. Rodriguez-Cortes. Control de La Dinámica Longitudinal Inspirado en la Dinámica Phugoid. Memorias del Congreso Nacional de Control Automático, pp. 243-248, 2018.
Palabras clave
dinámica Phugoid, Lanchester, control longitudinal, X-Plane
Referencias
- Astolfi, A. and Ortega, R. (2003). Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic control, 48(4), 590–606.
- Bhatta, P. and Leonard, N.E. (2004). A lyapunov function for vehicles with lift and drag: Stability of gliding. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 4, 4101–4106. IEEE.
- Bhatta, P. and Leonard, N.E. (2008). Nonlinear gliding stability and control for vehicles with hydrodynamic forcing. Automatica, 44(5), 1240–1250.
- Bloch, A.M., Chang, D.E., Leonard, N.E., and Marsden, J.E. (2001). Controlled lagrangians and the stabilization of mechanical systems. ii. potential shaping. IEEE Transactions on Automatic Control, 46(10), 1556–1571.
- Bloch, A.M., Leonard, N.E., and Marsden, J.E. (2000). Controlled lagrangians and the stabilization of mechanical systems. i. the first matching theorem. IEEE Transactions on automatic control, 45(12), 2253–2270.
- Bloch, A.M. and Marsden, J.E. (1990). Stabilization of rigid body dynamics by the energy-casimir method. Systems & Control Letters, 14(4), 0167–6911.
- DATCOM, U.S.A.F. (2018). Stability and Control DATCOM. URL http://www.pdas.com/datcom.html.
- Gavilan, F., Vazquez, R., and Acosta, J.A. (2014). Adap- ´ tive control for aircraft longitudinal dynamics with thrust saturation. Journal of guidance, control, and dynamics, 38(4), 651–661.
- Kwatny, H.G., Dongmo, J.E.T., Chang, B.C., Bajpai, G., Yasar, M., and Belcastro, C. (2012). Nonlinear analysis of aircraft loss of control. Journal of Guidance, Control, and Dynamics, 36(1), 149–162.
- Lambregts, A. (1983). Vertical flight path and speed control autopilot design using total energy principles. In Guidance and Control Conference, 2239.
- Lanchester, F.W. (1907). Aerodonetics. london, 1908.[preface dated may 1908.].
- Lee, T., Leok, M., and McClamroch, N.H. (2017). Global formulations of lagrangian and hamiltonian dynamics on manifolds.
- Liu, C. and Chen, W.H. (2016). Disturbance rejection flight control for small fixed-wing unmanned aerial vehicles. Journal of Guidance, Control, and Dynamics, 2810–2819.
- Ortega, R., Perez, J.A.L., Nicklasson, P.J., and Sira Ramirez, H.J. (2013). Passivity-based control of EulerLagrange systems: mechanical, electrical and electromechanical applications. Springer Science & Business Media.
- Ortega, R., Van Der Schaft, A., Maschke, B., and Escobar, G. (2002). Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems. Automatica, 38(4), 585–596.
- Research, L. (2018). X-Plane. URL http://www.x-plane.com/.
- Von Mises, R. (1959). Theory of flight. Courier Corporation.