Pérez Ibarra, César Gabriel | Universidad Tecnológica De La Mixteca |
Linares-Flores, Jesús | Universidad Tecnológica De La Mixteca |
Gonzalo Curiel Olivares, GonzCuriel | Universidad Tecnológica De La Mixteca |
Hernández Méndez, Arturo | Universidad Tecnológica De La Mixteca |
Rubén Omar García Valladres, Ruben | Universidad Tecnológica De La Mixteca |
Resumen: En este artículo se propone un control por retroalimentacíon de la salida pasiva del error exacto para un convertidor CD-CD tipo elevador intercalado. El valor de la resistencia de carga se calcula a través de un estimador algebraico en línea, el cual se adapta a las variables de referencia deseadas para cumplir con la tarea de regulación de voltaje a la salida del convertidor. Los resultados experimentales muestran el desempeño en la regulación de voltaje del controlador propuesto en lazo cerrado, así como la robustez ante cambios súbitos de la resistencia de carga. La implementación experimental del controlador se realizó en un procesador digital de señales TMS320F28335 de la firma Texas Instruments.
¿Cómo citar?
C.G. Perez-Ibarra, J. Linares-Flores, G. Curiel-Olivares, A. Hernandez-Mendez & R.O. Garcia-Valladares †. Control de Seguimiento Suave de Voltage Basado en Pasividad y Estimación Algebraica en Línea del Parámetro de Carga de Salida del Convertidor Elevador Intercalado. Memorias del Congreso Nacional de Control Automático, pp. 163-168, 2019.
Palabras clave
Control de Sistemas No Lineales, Sistemas Electrónicos de Potencia
Referencias
- Abad, J.A.J.J., Sandoval-Garcia, A.P., Linares-Flores, J., Guerrero-Castellanos, J.F., Banuelos-Sanchez, P., and Contreras-Ordaz, M.A. (2018). Fpga implementation of passivity based control and output load algebraic estimation for transformerless multilevel active rectifier. IEEE Transactions on Industrial Informatics, 1–1. doi: 10.1109/TII.2018.2865445.
- Apablaza, D. and Munoz, J. (2016). Laboratory implementation of a boost interleaved converter for pv applications. IEEE Latin America Transactions, 14(6), 2738–2743. doi:10.1109/TLA.2016.7555247.
- Chen, H.C., Lu, C.Y., and Rout, U.S. (2017). Decoupled master-slave current balancing control for three-phase interleaved boost converters. IEEE Transactions on Power Electronics, 33(5), 3683–3687.
- Devi, M.A., Valarmathi, K., and Mahendran, R. (2014). Ripple current reduction in interleaved boost converter by using advanced pwm techniques. In 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies, 115–119. IEEE.
- Diop, S. and Fliess, M. (1991). Nonlinear observability, identifiability, and persistent trajectories. In [1991] Proceedings of the 30th IEEE Conference on Decision and Control, 714–719 vol.1. doi: 10.1109/CDC.1991.261405.
- El Fadil, H., Giri, F., Guerrero, J., Haloua, M., and Abouloifa, A. (2011). Advanced control of interleaved boost converter for fuel cell energy generation system. IFAC Proceedings Volumes, 44(1), 2803–2808.
- Fliess, M. and Sira-Ram´ırez, H. (2003). An algebraic framework for linear identification. ESAIM: Control, Optimisation and Calculus of Variations, 9, 151–168.
- Flores, J.L., Avalos, J.L.B., and Espinosa, C.A.B. (2011). Passivity-based controller and online algebraic estimation of the load parameter of the dc-to-dc power converter cuk type. IEEE Latin America Transactions, 9(1), 784–791.
- Giral, R., Martinez-Salamero, L., Leyva, R., and Maixe, J. (2000). Sliding-mode control of interleaved boost converters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(9), 1330– 1339.
- Linares-Flores, J., Sira-Ram´ırez, H., Yescas-Mendoza, E., and V´asquez-Sanjuan, J. (2012). A comparison between the algebraic and the reduced order observer approaches for on-line load torque estimation in a unit power factor rectifier-dc motor system. Asian Journal of Control, 14(1), 45–57.
- Linares-Flores, J., Guerrero-Castellanos, J., LescasHern´andez, R., Hern´andez-M´endez, A., and V´azquezPerales, R. (2018). Angular speed control of an induction motor via a solar powered boost converter-voltage source inverter combination. Energy, 166, 326–334.
- Linares-Flores, J., Méndez, A.H., García- Rodríguez, C., and Sira-Ram´ırez, H. (2013). Robust nonlinear adaptive control of a “boost” converter via algebraic parameter identification. IEEE Transactions on Industrial Electronics, 61(8), 4105–4114.
- Linares-Flores, J., Reger, J., and Sira-Ram´ırez, H. (2010). Load torque estimation and passivity-based control of a boost-converter/dc-motor combination. IEEE Transactions on Control Systems Technology, 18(6), 1398–1405.
- Mathew, D. and David, D. (2017). An interleaved converter with maximum power point tracking. In 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 268–274. IEEE.
- Newlin, D.J.S., Ramalakshmi, R., and Rajasekaran, S. (2013). A performance comparison of interleaved boost converter and conventional boost converter for renewable energy application. In 2013 International Conference on Green High Performance Computing (ICGHPC), 1–6. IEEE.
- Parveen, N. and Rupesh, K. (2016). Design and simulation of interleaved dc-dc boost converter for three-phase loads using solar panel. In 2016 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), 514–519. IEEE.
- Sira-Ramirez, H.J. and Silva-Ortigoza, R. (2006). Control design techniques in power electronics devices. Springer Science & Business Media.
- Somkun, S., Sirisamphanwong, C., and Sukchai, S. (2015). A dsp-based interleaved boost dc–dc converter for fuel cell applications. international journal of hydrogen energy, 40(19), 6391–6404.
- Thiyagarajan, A., Kumar, S.P., and Nandini, A. (2014). Analysis and comparison of conventional and interleaved dc/dc boost converter. In Second International Conference on Current Trends In Engineering and Technology-ICCTET 2014, 198–205. IEEE.
- van der Schaft, A.J. and Van Der Schaft, A. (2000). L2-gain and passivity techniques in nonlinear control, volume 2. Springer.
- Xue, T., Minxin, Z., and Songtao, Y. (2016). Maximum power point tracking for photovoltaic power based on the improved interleaved boost converter. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2215–2218. IEEE.