Solano Domínguez, Solia Yadira | Universidad Nacional Autónoma De México |
Maya-Ortiz, Paul | Universidad Nacional Autónoma De México |
Vieyra Valencia, Natanael | Universidad Nacional Autónoma De México |
Resumen: En este trabajo se presenta el diseño de un sistema de control para compensar el problema de intermitencia ocasionado por los sistemas eólicos. Con base en la teoría de los sistemas lineales, una planta de cogeneración, junto con un esquema de control propuesto, es utilizada para compensar la deficiencia de potencia generada por el aerogenerador y así satisfacer la potencia demandada por la carga. El controlador propuesto es evaluado en un sistema de tres nodos donde se muestra un desempeño satisfactorio.
¿Cómo citar?
Solia Yadira Solano Domínguez, Paul Maya-Ortiz & Natanael Vieyra. Control de una Planta de Cogeneración para Compensar la Salida Variable de un Sistema Eólico. Memorias del Congreso Nacional de Control Automático, pp. 157-162, 2019.
Palabras clave
Sistemas Eléctricos de Potencia, Control de Sistemas Lineales, Control Clásico
Referencias
- Acha, E., Fuerte-Esquivel, C.R., Ambriz-Perez, H., and Angeles-Camacho, C. (2004). FACTS: modelling and simulation in power networks. John Wiley & Sons.
- Ackermann, T. (2005). Wind power in power systems. John Wiley & Sons.
- Al-Saffar, M. and Musilek, P. (2016). Fuzzy logic controller for large, grid-integrated wind farm under variable wind speeds. In Electric Power Engineering (EPE), 2016 17th International Scientific Conference on, 1–6. IEEE.
- Chenhong, Z., Penghui, W., Yuan, Z., and Yagang, Z. (2017). Wind speed prediction research based on time series model with residual correction. In 2017 2nd International Conference on Power and Renewable Energy (ICPRE), 466–470. IEEE.
- Denholm, P. (2006). Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage. Renewable Energy, 31(9), 1355–1370.
- Fauzan, N.A.B.S., Naayagi, R., Logenthiran, T., and Phan, V.T. (2016). Integration of battery energy storage using single phase inverter for intermittency mitigation. In 2016 IEEE Region 10 Conference (TENCON), 921–925. IEEE.
- Hu, S.D. (1985). Cogeneration.
- Kundur, P., Balu, N.J., and Lauby, M.G. (1994). Power system stability and control, volume 7. McGraw-hill New York.
- Li, W. and Joos, G. (2007). Comparison of energy storage system technologies and configurations in a wind farm. In 2007 IEEE Power Electronics Specialists Conference, 1280–1285. IEEE.
- Moselle, B., Padilla, J., and Schmalensee, R. (2010). Electricidad verde: energ´ıas renovables y sistema el´ectrico. Marcial Pons.
- Na, Y., Shenyu, C., and Linlin, S. (2014). Coordination and optimization model of wind power grid integrated system considering demand response. In 2014 International Conference on Power System Technology, 949– 955. IEEE.
- Novakovic, B., Pashaie, R., and Nasiri, A. (2014). Neural network based energy storage control for wind farms. In 2014 IEEE Symposium on Power Electronics and Machines for Wind and Water Applications, 1–6. IEEE.
- Ogata, K. and Yang, Y. (2002). Modern control engineering, volume 4. Prentice-Hall.
- Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., Cañizares, C.A., Iravani, R., Kazerani, M., Hajimiragha, A.H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., et al. (2014). Trends in microgrid control. IEEE Transactions on smart grid, 5(4), 1905–1919.
- Polimeros, G. (1981). Energy cogeneration handbook.
- Qi, Y., Yu, L., Kai, B., Rongfu, S., Peng, S., and Yuhui, W. (2016). A evaluation method of wind farm power prediction based on principal component analysis and entropy methods. In Control and Decision Conference (CCDC), 2016 Chinese, 2132–2136. IEEE.
- Sauer, P.W. and Pai, M.A. (1998). Power system dynamics and stability, volume 101. Prentice hall Upper Saddle River, NJ.
- Shahabi, M., Haghifam, M., Mohamadian, M., and Nabavi-Niaki, S. (2009). Microgrid dynamic performance improvement using a doubly fed induction wind generator. IEEE Transactions on Energy Conversion, 24(1), 137–145.
- Stevenson, W.D. et al. (1982). Elements of power system analysis, volume 4. Mcgraw-hill New York.
- Xu, Y., Zhang, W., Liu, W., Wang, X., Ferrese, F., Zang, C., and Yu, H. (2014). Distributed subgradientbased coordination of multiple renewable generators in a microgrid. IEEE Transactions on Power Systems, 29(1), 23–33.
- Zhang, Q. and So, P. (2000). Dynamic modelling of a combined cycle plant for power system stability studies. In 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 00CH37077), volume 2, 1538–1543. IEEE.