Guadarrama, Juan Luis | Instituto Politécnico Nacional |
Bejarano, Francisco Javier | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2024.058
Resumen: The design of control for systems with commensurate delays with single input is proposed. The key to the design is to find a similarity transformation such that, in the new coordinates, all delays are aligned in the same input channel. A necessary and sufficient condition is established for transforming the system into the desired controllable form. Moreover, our analysis demonstrates that incorporation of a stable asymptotic observer in the state feedback does not impair stability of the system.
¿Cómo citar?
Guadarrama, J.L. & Bejarano, F.J. (2024). Control Design for Linear Systems with Commensurate Delays Via Coordinate Transformation: A Single-Input Case Study. Memorias del Congreso Nacional de Control Automático 2024, pp. 338-343. https://doi.org/10.58571/CNCA.AMCA.2024.058
Palabras clave
Commensurate delays, controllable canonical form, control design, relative degree
Referencias
- Anguelova, M. and Wennberga, B. (2008). State elimination and identifiability of the delay parameter for nonlinear time-delay systems. Automatica, 44(5), 1373–1378.
- Antsaklis, P.J. and Michel, A.N. (1997). Linear systems, volume 8. Springer.
- Bejarano, F.J. and Zheng, G. (2014). Observability of linear systems with commensurate delays and unknown inputs. Automatica, 50(8), 2077–2083.
- Bejarano, F.J. (2021). Zero dynamics normal form and disturbance decoupling of commensurate and distributed time-delay systems. Automatica, 129.
- Belhamel, L., Buscarino, A., Fortuna, L., and Xibilia, M.G. (2020). Delay independent stability control for commensurate multiple time-delay systems. IEEE Control Systems Letters, 5(4), 1249–1254.
- Brown, W.C. (1993). Matrices over commutative rings. Marcel Dekker, Inc.
- Estrada-Garcia, H., Moog, C., and Márquez-Martínez, L. (2007). Tracking problem for nonlinear time-delay multi-input multi-output systems. 1812 – 1816.
- Fliess, M. and Mounier, H. (1998). Controllability and observability of linear delay systems: an algebraic approach. ESAIM: Control, Optimisation and Calculus of Variations, 3, 301–314.
- Fridman, E. (2014). Introduction to Time-Delay Systems: Analysis and Control. Systems & Control: Fundations & Applications. Birkh¨auser.
Gárate-García, A., Márquez-Martínez, L.A., and Moog, C.H. (2011). Equivalence of linear time-delay systems. IEEE Transactions on Automatic Control, 56(3), 666– 670. doi:10.1109/TAC.2010.2095550. - Hou, M., Zítek, P., and Patton, R.J. (2002). An observer design for linear time-delay systems. IEEE Transactions on Automatic Control, 47, 121–125.
- Kailath, T. (1980). Linear systems, volume 156. PrenticeHall Englewood Cliffs, NJ. Moog, C., Castro-Linares, R., Velasco-Villa, M., and Marque-Martinez, L.A. (2000). The disturbance decoupling problem for time-delay nonlinear systems. IEEE
- Transactions on Automatic Control, 45(2).
Morse, A.S. (1976). Ring models for delay-differential systems. Automatica, 12. - Mounier, H., Rouchon, P., and Joachim, R. (1997). Some examples of linear systems with delays. Journal Européen des Systèmes Automatisés, 31(6), 911–925.
- Mueller, M. (2009). Normal form for linear systems with respect to its vector relative degree. Linear Algebra and its Applications, 430, 1292–1312.
- Richard, J.P. (2003). Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10), 1667–1694.
- Zheng, G., Bejarano, F.J., Perruquetti, W., and Richard, J.P. (2015). Unknown input observer for linear timedelay systems. Automatica, 61, 35–43.
- Zheng, G., Barbot, J.P., and Boutat, D. (2013). Identification of the delay parameter for nonlinear timedelay systems with unknown inputs. Automatica, 49(6), 1755–1760.
- Zheng, G., Barbot, J.P., Boutat, D., Floquet, T., and Richard, J.P. (2011). On observation of time-delay systems with unknown inputs. IEEE Transactions on Automatic Control, 56(8), 1973–1978.