Palacios Pantoja, Alejandra | Instituto Politécnico Nacional |
Marquez-Rubio, J. Francisco | Instituto Politécnico Nacional |
Del Muro Cuéllar, Basilio | Instituto Politécnico Nacional |
Vazquez-Guerra, Rocio Jasmin | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2023.036
Resumen: This paper deals with the stabilization problem for unstable second order systems with time delay. The implementation of an observer scheme that makes use of a static gain parameter and a proportional-derivative (PD) controller is proposed. The necessary and sufficient conditions for the control scheme proposed are obtained. The performance of the proposed method is showed through numeric examples on simulations.
¿Cómo citar?
Palacios Pantoja, Alejandra; Marquez-Rubio, J. Francisco; Del Muro Cuéllar, Basilio; Vazquez-Guerra, Rocio Jasmin. Control for a Delayed System with Two Unstable Poles. Memorias del Congreso Nacional de Control Automático, pp. 284-289, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.036
Palabras clave
Control de Sistemas Lineales; Control Clásico; Control de Procesos
Referencias
- Ailon, A. and Gil, M. (2000). Stability analysis of a rigid robot with output-based controller and timedelay. Systems and Control Letters, 40 (1), 31-35.
- Ailon, A. and Gil, M. (Istanbul, Turkey, October (2018)). Optimum analytical tuning of i-pd controllers for unstable time delay systems. 6th International Conference on Control Engineering & Information Technology (CEIT).
- Ali, E. and Al-humaizi, K. (2000). Temperature control of ethylene to butene-1 dimerization reactor. Eng. Chem. Res., 39, 1320-1329.
- Ali, M., Hou, Z., and Noori, M. (1998). Stability and performance of feedback control systems with time delays. Computers & Structures, 66(2-3), 241-248. doi:10.1016/s0045-7949(97)00061-8.
- Bakosova, M., Vanekova, K., and Zavacka, J. (2010). PI CONTROLLER DESIGN FOR TIME DELAY SYSTEMS. IFAC Proceedings Volumes, 43(2), 349-354. doi:10.3182/20100607-3-cz-4010.00062.
- Barragan-Bonilla, L.A., M´arquez-Rubio, J.F., DelMuro-Cuellar, B., V´azquez-Guerra, R.J., and Mart´ınez, C. (2022). Observer-based control for high order delayed systems with an unstable pole and a pole at the origin. Asian Journal of Control, 25(3), 1759-1774. doi:10.1002/asjc.2914.
- Chien, Y. (2001). The effect of non-ideal mixing on the number of steady states and dynamic behaviour for autocatalytical reactions in a cstr. The Canadian Journal of Chemical Engineering, 79(1), 112-118.
- Cho, W., Lee, J., and Edgar, T. (2014). Simple analytic proportional-integral-derivative (pid) controller tuning rules for unstable processes. Industrial & Engineering Chemistry Research., 53(13), 5048-5054.
- Del-Muro-Cuéllar, B., Márquez-Rubio, J.F., Velasco-Villa, M., and de Jesús Álvarez- Ramírez, J. (2012). On the control of unstable first order linear systems with large time lag: Observer based approach. European Journal of Control, 18(5), 439-451. doi:10.3166/ejc.18.439-451.
- Lee, S., Wang, Q., and Xiang, C. (2010). Stabilization of all-pole unstable delay processes by simple controllers. Process Control, 20(2), 235-239.
- Liu, T., Cai, Y., Zhang, W., and Gu, D. (2005a). New modified smith predictor scheme for integrating and unstable processes with time delay. Control Theory Appl, 152(2), 238-246.
- Liu, T., Zhang,W., and Gu, D. (2005b). Analytical design of two-degree of freedom control scheme for open-loop unstable processes with time delay. Journal of Process Control, 15(5), 559-572.
- Márquez-Rubio, J.F., del Muro-Cuéllar, B., and Ramírez, J. A. (2014). Stabilization region of PD controller for unstable first order process with time delay. International Journal of Control, Automation and Systems, 12(2), 265-273. doi:10.1007/s12555-013-0097-6.
- Martínez-Barrera, G., Márquez-Rubio, J., and Del Muro- Cuéllar, B. (2020). Stabilization strategy for an unstable second-order delay system based on an observer. AMCA.
- Niculescu, S. (2001). Delay effects on stability: a robust control approach. in lecture notes in control and information sciences. Springer, Berlin., 269.
- Novella-Rodríguez, D.F., del Muro Cuéllar, B., Márquez-Rubio, J.F., Hernández- Pérez, M. A., and Velasco-Villa, M. (2019). PD–PID controller for delayed systems with two unstable poles: a frequency domain approach. International Journal of Control, 92(5), 1196-1208. doi:10.1080/00207179.2017.1386326.
- Raja, G.L. and Ali, A. (2017). Series cascade control: An outline survey. In 2017 Indian Control Conference (ICC). IEEE. doi:10.1109/indiancc.2017.7846509.
- Rao, A., Rao, V., and Chidambaram, M. (2009). Direct synthesis based controller design for integrating processes with time delay. Franklin Inst., 346(1), 38-56.
- Seshagiri, R. and Chidambaram, M. (2012). Pi/pid controllers design for integrating and unstable systems. Springer, London.
- Sipahi, R. and Nicuescu, S. (2011). Stability and stabilization of systems with time delay. IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135.
- Smith, O. (1957). Close control of loops with dead time. Eng.Prog.,, Vol. 53.
- Tognetti, E. and deOliveira, G. (2022). Srobust state feedback-based design of pid controllers for high-order systems with time-delay and parametric uncertainties. Control Autom. Electr. Syst., 33, 382-392.
- Tsai, H.H., Fuh, C.C., Ho, J.R., Lin, C.K., and Tung, P.C. (2022). Controller design for unstable time-delay systems with unknown transfer functions. Mathematics, 10(3), 431. doi:10.3390/math10030431.
- Vanavil, B., Chaitanya, K.K., and Rao, A.S. (2013). Improved PID controller design for unstable time delay processes based on direct synthesis method and máximum sensitivity. International Journal of Systems Science, 1-18. doi:10.1080/00207721.2013.822124.