Mercado Uribe, Jose Angel | UNAM |
Moreno, Jaime A | UNAM |
Resumen: En este artículo se provee un control integral homogéneo por retroalimentación de salida capaz de estabilizar en tiempo finito el origen de un sistema no lineal SISO a pesar de perturbaciones Lipschitz acopladas. Asimismo, se construye la función de Lyapunov que permite asegurar la estabilidad del origen del sistema en lazo cerrado con un controlador integral discontinuo más un observador de estados suave.
Total descargados hasta ahora
161 Downloads
¿Cómo citar?
Angel Mercado-Uribe & Jaime A. Moreno. Control Integral Discontinuo por Retroalimentación de Salida. Memorias del Congreso Nacional de Control Automático, pp. 124-129, 2018.
Palabras clave
Control por Salida, Control Homogéneo, Construcción de Funciones de Lyapunov, Control por Modos Deslizantes
Referencias
- Andrieu, V., Praly, L., and Astolfi, A. (2008). Homogeneous approximation, recursive observer design and output feedback. SIAM J. Control Optim., 47(4), 1814–1850.
- Bacciotti, A. and Rosier, L. (2005). Liapunov functions and stability in control theory. Springer-Verlag, New York, 2nd ed. edition.
- Cruz-Zavala, E. and Moreno, J.A. (2017). Homogeneous high order sliding mode design: A Lyapunov approach. Automatica, 80, 232 – 238.
- Levant (2001). Higher Order Sliding Modes and Arbitrary-Order Exact Robust Differentiation. European Control Conference (ECC), Portugal, September 2001.
- Fridman, L. and Levant, A. (2002). Sliding Mode Control in Engineering, chapter 3. Marcel Dekker Ink., NY.
- Jesús Mendoza-Avila, Jaime A. Moreno, and Leonid Fridman (2017). An Idea for Lyapunov Function Design For Arbitrary Order Continuous Twisting Algorithms, 56th Annual Conference on Decision and Control (CDC), December.
- Hardy, G.H., Littlewood, J.E., and Polya, G. (1951). Inequalities. Cambridge University Press, London.
- Isidori, A. (1995). Nonlinear control systems. Springer Verlag, Berlin.
- Kamal, S., Moreno, J.A., Chalanga, A., Bandyopadhyay, B., and Fridman, L.M. (2016). Continuous terminal sliding-mode controller. Automatica, 69, 308 – 314.
- Khalil, H. (2002). Nonlinear Systems. Prentice–Hall, New Jersey, third edition.
- Arie Levant (2005). Quasi-continuous high-order slidingmode controllers. IEEE Transactions on Automatic Control, Vol. 50, N. 11.
- Moreno, J.A. (2016). Discontinuous integral control for mechanical systems. In 2016 14th International Workshop on Variable Structure Systems (VSS), 142–147.
- Moreno, J.A. (2018). Discontinuous Integral Control for Systems with relative degree two. Chapter 8 In: Julio Clempner, Wen Yu (Eds.) New Perspectives and Applications of Modern Control Theory; in Honor of Alexander S. Poznyak., Pp. 187–218. New Perspectives and Applications of Modern Control Theory. Springer International Publishing.
- Torres-Gonzalez, V., Fridman, L.M., and Moreno, J.A. (2015). Continuous twisting algorithm. In 2015 54th IEEE Conference on Decision and Control (CDC), 5397–5401.
- Torres-González, V., Sanchez, T., Fridman, L.M., and Moreno, J.A. (2017). Design of continuous twisting algorithm. Automatica, 80, 119 – 126.
- Angel Mercado-Uribe, and Jaime A. Moreno (2017). Discontinuous Integral Control for Systems in Controller Form, Asociación de México de Control Automático (AMCA), October. URL http://cnca2017.fime.uanl.mx/MemoriaCNCA17/media/ files/0017.pdf.
- Tonametl Sánchez, and Jaime A. Moreno (2017). Identificación de perturbación y control homogéneo por salida, Asociación de México de Control Automático (AMCA), October, 2017. URL http://cnca2017.fime.uanl.mx/MemoriaCNCA17/media/ files/0074.pdf.