Torres del Carmen, Felipe de Jesus | Universidad De Guanajuato |
Ramirez Paredes, Juan Pablo | Universidad De Guanajuato |
Zavala-Yoe, Ricardo | Tecnológico De Monterrey |
Guerrero-Ramírez, Gerardo | TecNM/CENIDET |
Garcia Beltran, Carlos Daniel | TecNM/CENIDET |
Mota, Juan | TecNM/CENIDET |
Resumen: This work presents a tracking control of a Flexible-Robot being actuated by a three phase induction motor, assuming a system control without perturbation and the case where a periodic pulse perturbation input is applied. Previous research about Flexible-Robot consider a dc motor to drive the joint. Induction Motors depict an alternative to be used as actuator, their main advantage is due to the minor cost in both the purchase and maintenance, but their nonlinear dynamics to set control is a challenge. The dynamic model of a joint-flexible-robot is combined with the induction motor dynamics. A control law is introduced to track a desired trajectory. This control input is used like the reference torque for the induction motor. Through the Simpson's 1/3 rule, the gain tuning for the tracking controller is given by minimizing the integral of time-weighted absolute error (ITAE). Simulations show the effectiveness of the controller proposed.
¿Cómo citar?
Felipe J. Torres, Juan P. Ramírez, Ricardo Zavala-Yoe, Gerardo V. Guerrero, Carlos D. García & Juan Mota. Control of an Induction Motor Driving a Flexible-Robot for Trajectory Tracking. Memorias del Congreso Nacional de Control Automático, pp. 346-351, 2019.
Palabras clave
Robótica y Mecatrónica, Control de Sistemas No Lineales, Sistemas Electromecánicos
Referencias
- Arteaga, M.A. and Siciliano, B. (2000). On tracking control of flexible robot arms. IEEE Transactions on Automatic Control, 45(3), 520–527.
- de Diniz, E., J´unior, A.B., Honorio, D.A., Barreto, L.H., and Dos Reis, L.L. (2012). An elbow planar manipulator driven by induction motors using sliding mode control for current loop. Control and Cybernetics, 41(2), 395–413.
- De Luca, A. (2000). Feedforward/feedback laws for the control of flexible robots. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, volume 1, 233–240. IEEE.
- Guerrero-Ramírez, G. and Tang, Y. (2001). Motion control of rigid robots driven by current-fed induction motors. Mechatronics, 11(1), 13–25.
- Hu, J., Dawson, D.M., and Qian, Y. (1996). Position tracking control for robot manipulators driven by induction motors without flux measurements. IEEE Transactions on Robotics and Automation, 12(3), 419– 438.
- Ji, C.Y., Chen, T.C., and Lee, Y.L. (2008). Joint control for flexible-joint robot with input-estimation approach and lqg method. Optimal Control Applications and Methods, 29(2), 101–125.
- Kalyoncu, M. (2008). Mathematical modelling and dynamic response of a multi-straight-line path tracing flexible robot manipulator with rotating-prismatic joint. Applied Mathematical Modelling, 32(6), 1087– 1098.
- Marino, R., Tomei, P., and Verrelli, C.M. (2010). Induction motor control design. Springer Science & Business Media.
- Martins, F.G. (2005). Tuning pid controllers using the itae criterion. International Journal of Engineering Education, 21(5), 867.
- Sun, C., Gao, H., He, W., and Yu, Y. (2018). Fuzzy neural network control of a flexible robotic manipulator using assumed mode method. IEEE transactions on neural networks and learning systems, (99), 1–14.
- Tokhi, M.O. and Azad, A.K. (2008). Flexible robot manipulators: modelling, simulation and control, volume 68. Iet.
- Yang, H.J. and Tan, M. (2018). Sliding mode control for flexible-link manipulators based on adaptive neural networks. International Journal of Automation and Computing, 15(2), 239–248.