| José Manuel Andújar | Centro de Investigación en Tecnología, Energía y Sostenibilidad |
| Francisco Vivas | Centro de Investigación en Tecnología, Energía y Sostenibilidad |
| Francisca Segura | Centro de Investigación en Tecnología, Energía y Sostenibilidad |
https://doi.org/10.58571/CNCA.AMCA.2025.031
Resumen: Renewable microgrids are emerging as a central solution for decarbonization and distributed electricity generation. Their inherent intermittency, however, necessitates hybrid energy storage systems (ESS) to guarantee continuous supply, which increases complexity and nonlinear behavior. This work incorporates hydrogen production, storage, and utilization into the ESS, improving system flexibility and reliability. While local controllers govern individual components (e.g., PV maximum power point tracking), overall operation requires a higher-level energy management system (EMS) to ensure instantaneous power balance, long-term energy stability, and economic efficiency, an inherently multivariable and nonlinear control challenge. This paper introduces a methodological framework for developing a general state-space model of hydrogenhybridized renewable microgrids. The proposed control-oriented model integrates both technical and economic parameters, supporting EMS design for short-term demand–generation matching and long-term economic optimization. To capture nonlinearities while retaining computational efficiency, the model adopts a linear parameter-varying (LPV) approach. This framework establishes a robust foundation for implementing advanced predictive control strategies in complex microgrid architectures.

¿Cómo citar?
Manuel Andújar, J., Vivas, F. & Segura, F. (2025). Control-oriented model for hydrogen integration in renewable microgrids. Memorias del Congreso Nacional de Control Automático 2025, pp. 179-184. https://doi.org/10.58571/CNCA.AMCA.2025.031
Palabras clave
Renewable microgrid, electrolyzer, fuel cell, energy management system, state space model, nonlinear behavior, linear parameter-varying model.
Referencias
- Andújar, J.M., Vivas, F.J., Segura, F., and Calderón, A.J. (2022). Integration of air-cooled multi-stack polymer electrolyte fuel cell systems into renewable microgrids. Intl Journal of Elec Power and Energy Sys, vol. 142, 108305.
- Andújar, J.M., Segura, F., Rey, J., and Vivas, F.J. (2022). Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option. Energies, vol. 15(17), 6196.
- Baccouche, I., Jemmali, S., Manai, B., Omar, N., and Essoukri, N. (2017). Improved OCV model of a Li-ion NMC battery for online SOC estimation using the extended Kalman filter. Energies, vol. 10(6), 764.
- Barra, C., Falcone, P.M., and Giganti, P. (2025). Exploring the impact of economic, climate, and energy policy uncertainty on the Environmental Kuznets Curve: International evidence. International Economics, vol. 182, 100592.
- Caparrós J.J., Saenz, J.L., López, E., Andújar, J.M., Segura, F., Vivas, F.J., and Isorna, F. (2022). Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid. Applied Energy, Vol. 308, 118355.
- Hajiaghasi, S., Salemnia, A., and Hamzeh, M. (2019). Hybrid energy storage system for microgrids applications: A review. Journal of Energy Storage, vol. 21, pp. 543-570.
- He, W., King, M., Luo, X., Dooner, M., Li, D., and Wang, J. (2021).Technologies and economics of electric energy storages in power systems: Review and perspective. Advances in Applied Energy, vol. 4, 100060.
- Lavety S, Keshri RK, Chaudhari MA. A dynamic battery model and parameter extraction for discharge behavior of a valve regulated lead-acid battery. Journal of Energy Storage 2021;33:102031. doi:10.1016/j.est.2020.102031.
- Li S, Zhu J, Dong H, Zhu H, Luo F, Borghetti A. Multi-timescale energy management of renewable microgrids considering grid-friendly interaction. Applied Energy 2024;367:123428. doi:10.1016/j.apenergy.2024.123428.
- Monforti, A., Bartolini, A., Segura, F., Vivas, F.J., Comodi, G., McPhail S.J., and Andújar, J.M. (2021). A model-based parametric and optimal sizing of a battery/hydrogen storage of a real hybrid microgrid supplying a residential load: Towards island operation. Advances in Applied Energy, vol. 3, 100048.
- Pajares, A., Vivas, F.J., Blasco, X., Herrero, J.M., Segura, F., and Andújar, J.M. (2023). Methodology for energy management strategies design based on predictive control techniques for smart grids. Applied Energy, 351, 121809.
- Petrollese, M., Valverde, L., Cocco, D., Cau, G., and Guerra, J. (2016). Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid. Appl Energy, vol. 166, pp. 96-106.
- Rahman, M.S., and Oo, A.M.T. (2017). Distributed multi-agent based coordinated power management and control strategy for microgrids with distributed energy resources. Energy Convers Manage, vol. 139, pp. 20–32.
- Rezayof, F., Banejad, M., Akbarzadeh, A., and Iwanski, G. (2024). A long-horizon move-blocking based direct power model predictive control for dynamic enhancement of DC microgrids. Ain Shams Engineering Journal, vol. 15, 7, pp. 102837.
- Rezk H, Fathy A. Hydrogen reduction-based energy management strategy of hybrid fuel cell/PV/battery/supercapacitor renewable energy system. Journal of Energy Storage 2024;86:111316.
- Tekin, M., and Karamangil, M.İ. (2024). Comparative análisis of equivalent circuit battery models for electric vehicle battery management systems. Journal of Energy Storage, vol. 86, 111327.
- Uddin, M., Mo. H., Dong, D., Elsawah, S., Zhu, J., and Guerrero J.M. (2023). Microgrids: A review, outstanding issues and future trends. Energy Strategy Reviews, vol. 49, 101127.
- Van, L.P., Chi, K. D., and Duc, T.N. (2023). Review of hydrogen technologies based microgrid: Energy management systems, challenges and future recommendations. International Journal of Hydrogen Energy, vol. 48 (38), pp. 14127-14148.
- Vivas FJ, De las Heras A, Segura F, Andújar JM. A review of energy management strategies for renewable hybrid energy systems with hydrogen backup. Renewable and Sustainable Energy Reviews 2018;82. doi:10.1016/j.rser.2017.09.014.
- Vivas, F.J., Segura, F., Andújar, J.M., and Caparrós, J.J. (2020). A suitable state-space model for renewable source-based microgrids with hydrogen as backup for the design of energy management systems. Energy Conv. and Manag., vol. 219, 113053.
- Vivas, F.J., Pajares, A., Blasco, X., Herrero, J.M., Segura, F. and Andújar, J. M. (2025). A novel energy management System based on two-level hierarchical economic model predictive control for use in microgrid control. Energy Conv. And Manag.: X, vol. 26, pp. 101027.
