Guel Cortez, Adrián Josué | Universidad Autónoma De San Luis Potosí |
Miranda, Homero | Universidad Autónoma De San Luis Potosí |
Méndez-Barrios, César Fernando | Universidad Autónoma De San Luis Potosí |
Langarica Cordoba, Diego | Universidad Autónoma De San Luis Potosí |
Resumen: En el presente trabajo se detalla el diseño de controladores de tipo PI estabilizantes a convertidores de potencia de corriente directa a corriente directa tipo elevador en modo corriente. El análisis es acompañado de simulaciones que comprueban la utilidad en la técnica de diseño. Finalmente, se muestran una serie de simulaciones y se discute el trabajo a futuro puntualizando los problemas que han quedado abiertos.
Controlador de Orden Fraccionario PI Aplicado a Convertidor CD-CD Tipo Elevador
Size: 422 KB
Total descargados hasta ahora
214 Downloads
¿Cómo citar?
A.-J. Guel-Cortez, Homero Miranda-Vidales, Cesar Méndez-Barrios & Diego Langarica-Cordoba. Controlador de Orden Fraccionario PI Aplicado a Convertidor CD-CD Tipo Elevador. Memorias del Congreso Nacional de Control Automático, pp. 701-706, 2019.
Palabras clave
Sistemas Electrónicos de Potencia, Control de Procesos, Otros Tópicos Afines
Referencias
- Astrom, K. and Hägglund, T. (2001). The future of pid control. ¨ Chemical Engineering Progress,, 9(11), 1163–1175.
- Caponetto, R. (2010). Fractional Order Systems: Modeling and Control Applications. World Scientific Series on Non- linear Science: Series A. World Scientific.
- Dulau, M., Gligor, A., and Dul ˘ au, T.M. (2017). Fractional ˘ order controllers versus integer order controllers. Procedia Engineering, 181(Supplement C), 538–545. doi: https://doi.org/10.1016/j.proeng.2017.02.431. 10th International Conference Interdisciplinarity in Engineering, INTER-ENG 2016, 6-7 October 2016, Tirgu Mures, Romania.
- Gryazina, E.N., Polyak, B.T., and Tremba, A.A. (2008). Ddecomposition technique state-of-the-art. Automation and Remote Control, 69(12), 1991–2026.
- Guel-Cortez, A.J. (2018). Modeling and control of fractional order systems. The linear systems case. Master’s thesis, Centro de investigacion y estudios de postgrado, UASLP.
- Guel-Cortez, A.J., Mendez-Barrios, C.., Ram ´ ´ırez, V., Romero, J.G., Gonzalez-Galv ´ an, E., and Kado-Mercado, J. (2018).
- Guel-Cortez, A.J., Mendez-Barrios, C.F., González-Galvan, ´ E.J., Mejía-Rodríguez, G., and Felix, L. (2019). Ge- ´ ometrical design of fractional PDµ controllers for linear time-invariant fractional-order systems with time delay. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. doi:10.1177/0959651818823450. URL https://doi.org/10.1177/0959651818823450.
- Hamamci, S.E. (2008). Stabilization using fractionalorder pi and pid controllers. Nonlinear Dynamics, 51(1), 329–343. doi:10.1007/s11071-007-9214-5. URL https://doi.org/10.1007/s11071-007-9214-5.
- Hollkamp, J.P., Sen, M., and Semperlotti, F. (2018). Modelorder reduction of lumped parameter systems via fractional calculus. Journal of Sound and Vibration, 419, 526–543.
- Karanjkar, D.S., Chatterji, S., Shimi, S.L., and Kumar, A. (2013). Performance analysis of integer and fractional order current mode control strategies applied to boost power converter. In 2013 International Conference on Advances in Technology and Engineering (ICATE), 1–6. doi: 10.1109/ICAdTE.2013.6524714.
- Langarica-Cordoba, D., Leyva-Ramos, J., Diaz-Saldierna, L.H., and Ramirez-Rivera, V.M. (2016). Non-linear currentmode control for boost power converters: a dynamic backstepping approach. IET Control Theory and Applications.
- Mayes, J. and Sen, M. (2011). Approximation of potentialdriven flow dynamics in large-scale self-similar tree networks. Proceedings of the royal society a mathematical, physical and engineering sciences, 467(2134), 2810–2824.
- Monje, C., Chen, Y., Vinagre, B., Xue, D., and Feliu-Batlle, V. (2010). Fractional-order Systems and Controls: Fundamentals and Applications. Advances in Industrial Control. Springer London.
- O’Dwyer, A. (2009). Handbook of pi and pid controller tuning rules (3rd ed.). Londond: Imperial College Press (ICP).
- Podlubny, I. (1994). Fractional-order systems and fractionalorder controllers. Slovak Academy of Science, Institute of Experimental Physics, UEF 03-94, Kosice, 1–18.
- Rasoanarivo, I., Brechet, S., Battiston, A., and NahidMobarakeh, B. (2012). Behavioral analysis of a boost converter with high performance source filter and a fractionalorder pid controller. In 2012 IEEE Industry Applications Society Annual Meeting, 1–6. doi:10.1109/IAS.2012.6374037.
- Sen, M., Hollkamp, J.P., Semperlotti, F., and Goodwine, B. (2018). Implicit and fractional-derivative operators in infinite networks of integer-order components. Chaos, Solitons & Fractals, 114, 186–192.
- Sivaraj, D. and Arounassalame, M. (2018). Fractional order pi controller for high gain boost converter. In 2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC), 281–286. doi: 10.1109/RTECC.2018.8625690.
- Tehrani, K.A., Amirahmadi, A., Rafiei, S.M.R., Griva, G., Barrandon, L., Hamzaoui, M., Rasoanarivo, I., and Sargos, F.M. (2010). Design of fractional order pid controller for boost converter based on multi-objective optimization. In Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, T3–179– T3–185. doi:10.1109/EPEPEMC.2010.5606514.
- Tepljakov, A., Petlenkov, E., and Belikov, J. (2011). Fomcon: Fractional-order modeling and control toolbox for matlab. In 18th Int. Mixed Design of Integrated Circuits and Systems (MIXDES) Conference, 684–689.
- Uchaikin, V. (2013). Fractional Derivatives for Physicists and Engineers: Volume I Background and Theory Volume II Applications. Nonlinear Physical Science. Springer Berlin Heidelberg.
- Valerio, D. and da Costa, J.S. (2013). ´ An Introduction to Fractional Control. Control, Robotics and Sensors Series. Institution of Engineering and Technology.