Cruz-Zavala, Emmanuel | Centro Universitario De Ciencias Exactas E Ingenierías, UdG |
Nuño, Emmanuel | University of Guadalajara |
Moreno, Jaime | Universidad Nacional Autonoma De Mexico |
Resumen: En este artículo se propone un controlador por retroalimentación de estado y un controlador por retroalimentaci&ocute;n de salida, ambos proporcionan estabilidad en tiempo finito para la dinámica del doble integrador. En comparación con otros esquemas reportados, el sistema retroalimentado no es homogéneo de grado negativo y no es posible utilizar los resultados establecidos para sistemas homogéneos. Este problema se resuelve proponiendo funciones de Lyapunov estrictas. También se incluye una simulación numérica para mostrar el desempeño de los controladores propuestos.
¿Cómo citar?
Emmanuel Cruz-Zavala, Emmanuel Nuño & Jaime A. Moreno. Controladores de Tiempo Finito No Homogéneos para el Doble Integrador. Memorias del Congreso Nacional de Control Automático, pp. 255-260, 2021.
Palabras clave
Finite-time Control, Lyapunov Functions, Double Integrator
Referencias
- Andrieu, V., Praly, L., and Astolfi, A. (2008). Homogeneous approximation, recursive observer design and output feedback. SIAM J. Control Optim., 47(4), 1814– 1850.
- Bacciotti, A. and Rosier, L. (2005). Lyapunov functions and stability in control theory. Springer-Verlag, New York, 2nd edition.
- Bernuau, E., Perruquetti, W., Efimov, D., and Moulay, E. (2012). Finite-time output stabilization of the double integrator. In Proceedings of the IEEE Conf. Decision and Control, 5906–5911.
- Bhat, S. and Bernstein, D. (1997). Finite-time stability of homogeneous systems. In Proc. Amer. Contr. Conf., 2513–2514. Albuquerque, NM.
- Bhat, S. and Bernstein, D. (1998). Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control, 43, 678–682.
- Cruz-Zavala, E., Sanchez, T., Moreno, J.A., and Nu˜no, E. (2018). Strict Lyapunov functions for homogeneous finite-time second-order systems. In 2018 56th IEEE Conf. Decision and Control (CDC), 1530–1535.
- Haimo, V.T. (1986). Finite time controllers. SIAM J. Contr. Optim., 24, 760–77.
- Hong, Y., Huang, J., and Xu, Y. (2001). On an output feedback finite-time stabilization problem. SIAM J. Contr. Optim., 46(2), 305–309.
- Mercado-Uribe, A. and Moreno, J.A. (2017). Discontinuous integral control for systems in controller form. In Congreso Nacional de Control Automático 2017, 630– 635.
- Michel, A., Hou, L., and Liu, D. (2008). Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems. Systems & Control: Foundations & Applications. Birkhauser, Boston.
- Moreno, J.A. (2014). On strict Lyapunov functions for some non-homogeneous super-twisting algorithms. Journal of the Franklin Institute, 351(4), 1902–1919. Special Issue on 2010-2012 Advances in Variable Structure Systems and Sliding Mode Algorithms.
- Moulay, E. and Perruquetti, W. (2006). Finite-Time Stability and Stabilization: State of the Art, 23–41. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Orlov, Y. (2009). Discontinuos Systems: Lyapunov analysis and robust synthesis under uncertainty conditions. Springer.
- Polyakov, A., Orlov, Y., Oza, H., and Spurgeon, S. (2015). Robust finite-time stabilization and observation of a planar system revisited. In 2015 54th IEEE Conf. Decision and Control (CDC), 5689–5694.
- Su, Y. and Zheng, C. (2015). Robust finite-time output feedback control of perturbed double integrator. Automatica, 60, 86–91.
- Venkataraman, S. and Gulati, S. (1993). Terminal slider control of robot systems. J. of Intelligent and Robotic Systems, 5, 31–55.
- Zavala-Rio, A. and Fantoni, I. (2014). Global finitetime stability characterized through a local notion of homogeneity. IEEE Trans. Autom. Control, 59(2), 471– 477.