Linares-Flores, Jesús | Universidad Tecnológica de la Mixteca |
Navarro Martinez, Fernando | Universidad Tecnológica de la Mixteca |
Hernández Méndez, Arturo | Universidad Tecnológica de la Mixteca |
Juárez-Abad, José Antonio | Universidad Tecnológica de la Mixteca |
Montesinos-García, Juan Javier | Universidad Tecnológica de la Mixteca |
https://doi.org/10.58571/CNCA.AMCA.2024.033
Resumen: This article deals with the decentralized passivity-based controller (PBC) design for the power modules DC/DC and AC/DC connected to a DC microgrid. The DC power modules use buck and boost topologies, while the AC/DC rectifier employs the boost topology. Linear extended state observers are used to estimate the load current demand by the DC microgrid. Thus, the power modules get equitable contribution and synchronization. The PSIM simulation results show the effectiveness and robustness of the decentralized passivity-based controllers of the power modules for the DC microgrid system.
¿Cómo citar?
Linares Flores, J., Navarro Martinez, F.A., Hernández Méndez, A., Juárez Abad, J.A. & Montesinos, J.J. (2024). Decentralized passivity-based control for cooperative power modules in the DC Microgrid System. Memorias del Congreso Nacional de Control Automático 2024, pp. 191-195. https://doi.org/10.58571/CNCA.AMCA.2024.033
Palabras clave
DC Microgrid, Cooperative Power Modules, Decentralized Passivity-based Control
Referencias
- Al-Ismail, F.S. (2021). Dc microgrid planning, operation, and control: A comprehensive review. IEEE Access, 9, 36154–36172. doi:10.1109/ACCESS.2021.3062840.
- Anand, S. and Fernandes, B.G. (2013). Reduced-order model and stability analysis of low-voltage dc microgrid. IEEE Transactions on Industrial Electronics, 60(11), 5040–5049. doi:10.1109/TIE.2012.2227902.
- Bai, W., Sechilariu, M., and Locment, F. (2020). Dc microgrid system modeling and simulation based on a specific algorithm for grid-connected and islanded modes with real-time demand-side management optimization. Applied Sciences, 10(7). doi:10.3390/app10072544.
- El-Shahat, A. and Sumaiya, S. (2019). Dc-microgrid system design, control, and analysis. Electronics, 8(2). doi:10.3390/electronics8020124.
- Espina, E., Llanos, J., Burgos-Mellado, C., Cárdenas-Dobson, R., Martínez-Gómez, M., and Sáez, D. (2020). Distributed control strategies for microgrids: An overview. IEEE Access, 8, 193412–193448. doi: 10.1109/ACCESS.2020.3032378.
- Feng, X., Liu, J., and Lee, F. (2002). Impedance specifications for stable dc distributed power systems. IEEE Transactions on Power Electronics, 17(2), 157–162. doi: 10.1109/63.988825.
- Linares-Flores, J., Hernández-Mendez, A., Juárez-Abad, J.A., Contreras-Ordaz, M.A., García-Rodriguez, C., and Guerrero-Castellanos, J.F. (2023). Mppt novel controller based on passivity for the pv solar panelboost power converter combination. IEEE Transactions on Industry Applications, 59(5), 6436–6444. doi: 10.1109/TIA.2023.3274618.
- Liu, J., Feng, X., Lee, F., and Borojevich, D. (2003). Stability margin monitoring for dc distributed power systems via perturbation approaches. IEEE Transactions on Power Electronics, 18(6), 1254–1261. doi: 10.1109/TPEL.2003.818822.
- Loranca-Coutiño, J., Mayo-Maldonado, J.C., Escobar, G., Maupong, T.M., Valdez-Resendiz, J.E., and RosasCaro, J.C. (2022). Data-driven passivity-based control design for modular dc microgrids. IEEE Transactions on Industrial Electronics, 69(3), 2545–2556. doi: 10.1109/TIE.2021.3065615.
- Modu, B., Abdullah, M.P., Sanusi, M.A., and Hamza, M.F. (2023). Dc-based microgrid: Topologies, control schemes, and implementations. Alexandria Engineering Journal, 70, 61–92. doi: https://doi.org/10.1016/j.aej.2023.02.021.