Ramírez Mendoza, Abigail María Elena | CONACYT-CIIIA-FIME-UANL |
Resumen: The design of the control law for a PID controller is developed with base on the innovative learning algorithm of the Adaptive Fuzzy Spiking Neurons (AFSNs), for tuning of the proportional, integral and derivative gains, and the filter coefficient of a PID controller in parallel form. The PID controller for a gas turbine model is presented as an illustrative example. The simulation of the results of the application of the AFSNs for the tuning of the gains of the PID controller are performed in MatlabTM environment.
¿Cómo citar?
Ramírez-Mendoza A. M. E.. Design of a PID Controller Based on Adaptive Fuzzy Spiking Neurons. Memorias del Congreso Nacional de Control Automático, pp. 542-546, 2018.
Palabras clave
Learning algorithm, fuzzy neuron, Adaptive Fuzzy Spiking Neuron, PID tuning, control law
Referencias
- Gupta, M. M. (1992). On Fuzzy Neuron Models. In Lotfi A. Zadeh et al eds., Fuzzy logic for the management of uncertainty, Wiley-Interscience, pp. 479-491. isbn: 0-471-54799-9
- Gupta, M. M. (1993). Fuzzy logic, neural networks and virtual cognitive systems. In Second International Symposium on Uncertainty Modeling and Analysis, IEEE, pp. 90-97. doi: 10.1109/ISUMA.1993.366785
- Hilera González, J. R. and Martínez Hernando, V. J. (2000). Redes Neuronales Artificiales, Fundamentos, modelos y aplicaciones, Alfaomega Grupo Editor, RA-MA, Colombia, p. 77. isbn: 958-682-172-2
- Jun Young Lee Maolin Jin and Pyung Hun Chang (2014). Variable PID Gain Tuning Method Using Backstepping Control with Time-Delay Estimation and Nonlinear Damping. IEEE Transactions on Industrial Electronics, 61(12), pp. 6975-6985. doi: 10.1109/TIE.2014.2321353
- Ramírez, A. and Pérez, J. L. (2002). A Fuzzy Gupta Integrator Neuron Model with Spikes Response and Axonal delay. In George E. Lasker ed. In Advances in Artificial Intelligence & Engineering Cybernetics, Windsor, Canada: IIAS, IX, pp. 12–16. isbn: 1- 894613-44-9
- Ramírez-Mendoza, A., Pérez-Silva, J. L. and LaraRosano, F. (2011). Electronic Implementation of a Fuzzy Neuron Model with a Gupta Integrator. Journal of Applied Research and Technology, december, 9(3), pp. 380-393. issn: 1665-6423 Web site:http: //cibernetica.ccadet.unam.mx/jart/vol9_3/electronic_ 10.pdf
- Ramírez-Mendoza, A. (2014). Study of the response of the connection of Adaptive Fuzzy Spiking Neurons with self-synapse in each single neuron. 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Ciudad del Carmen, Campeche, México, september 29 – october 3, pp. 1-6. isbn: 978-1-4799- 6228-0
- Ramírez-Mendoza, A. M. E. (2016). Study of the state of art in experimental aerodynamics testing with unmanned aerial vehicles, UAVs in Mexico. XIII Congreso Internacional sobre Innovación y Desarrollo Tecnológico (CIINDET), IEEE, Libro digital: Tecnologías modernas para la industria y la educación, 7 al 9 de Septiembre, Cuernavaca, Morelos, México. isbn obra independiente: 978-607-95255-7-6.
- Ramírez-Mendoza, A., Covarrubias-Fabela, J. R., Amezquita-Brooks, L. A., Hernández-Alcántara, D. (2018). Parameter Identification using Fuzzy Neurons: Application to Drones and Induction Motors. DYNA, 93(1), pp. 75–81. issn: 0012-7361 doi: http://dx.doi.org/10.6036/8439
- Ramírez-Mendoza, A. M. E. (2018). Modeling the Spike Response for Adaptive Fuzzy Spiking Neurons with Application to a Fuzzy XOR. Computer Modeling in Engineering & Sciences (CMES), Tech Science Press, 115(3), pp. 295-311. doi:10.3970/cmes.2018.00239 issn: 1526-1492 (printed) issn: 1526-1506 (online)
- Ramírez-Mendoza, A. M. E., Covarrubias-Fabela, J. R., Amezquita-Brooks, L. A., García Salazar, O. (unpublished). Trajectory tracking control of a multirotor Unmanned Aerial Vehicle using Adaptive Fuzzy Spiking Neurons and experimental aerodynamic data.
- Ramírez-Mendoza, A. M. E. (unpublished). Modeling the Fault-Tolerant PID controller law based on Adaptive Fuzzy Spiking Neurons.
- Sánchez-Camperos, E. N., Alanís-García, A. Y. (2006), Redes Neuronales Conceptos fundamentales y aplicaciones a control automático, Prentice Hall/Pearson, pp. 232. isbn-10: 84-8322-295-7 isbn-13: 978-84-8322-295-9 Sánchez-Parra, M. (2010). Control PID tolerante a fallas para una Turbina de Gas [online]. México, Doctoral thesis, Universidad Nacional Autónoma de México. Available from: http://tesis.unam.mx/, http://oreon.dgbiblio.unam.mx/
- Sánchez-Parra, M., Suarez, D. A., and Verde, C. (2011). Fault Tolerant Control for Gas Turbines. 16th International Conference on Intelligent System Applications to Power Systems (ISAP), Hersonisos, Crete, Greece, september 25-28, Category number CFP11755-ART, Code 87693. doi: 10.1109/ISAP.2011.6082247
- Yu, W. and Rosen, J. (2013). Neural PID Control of Robot Manipulators with Application to an Upper Limb Exoskeleton. IEEE Transactions on Cybernetics, april, 43(2), pp. 673-684. doi: 10.1109/TSMCB.2012.2214381
- Zadeh, L.A., (1977). Theory of Fuzzy Sets, Encyclopedia of Computer Science and Technology, Marcel Dekker, Nueva York, E.U.A.