Morales Valdez, Jesús | CINVESTAV |
Avilés, Jesús David | TecNM/Instituto Tecnológico De Aguascalientes |
Yu, Wen | CINVESTAV |
Resumen: Este artículo presenta un enfoque para la detección de daño en edificios utilizando observadores intervalo. Primero, se diseña el observador intervalo para establecer las cotas superiores e inferiores de las variables de desplazamientos y velocidades de la respuesta estructural, bajo condiciones nominales. Suponiendo que durante la actividad sísmica los parámetros estructurales cambian, es de esperarse que con la respuesta también suceda lo mismo. Por consiguiente, los pisos que presentan daño estructural tendrán mayor cambio en su respuesta. De modo que si tal comportamiento es mayor o menor que los umbrales adaptables, establecidos por el observador intervalo, se asume como un claro indicador de daño. Esto es consecuencia de la pérdida de rigidez en el piso dañado. Los resultados de simulación confirman que el método propuesto es prometedor para aplicaciones prácticas.
¿Cómo citar?
Jesus Morales-Valdez, Jesus David Aviles & Wen Yu. Detección de Daño en Edificios Basada en Observadores Intervalo. Memorias del Congreso Nacional de Control Automático, pp. 316-321, 2021.
Palabras clave
Damage detection, interval observers, building structures
Referencias
- Avilés, J.D., Dávila, J., and Moreno, J.A. (2016). Fault detection using adaptive thresholds for nonlinear systems: A preserving order observer approach. IFAC-PapersOnLine, 49(18), 885–890.
- Avilés, J.D. and Moreno, J.A. (2018). Interval observer design for nonlinear systems: Stability radii approach. IEEE Access, 6(1), 52801–52813. doi: 10.1109/ACCESS.2018.2869840.
- Avilés, J.D. and Moreno, J.A. (2020). Dissipative interval observer design for discrete-time nonlinear systems. Asian Journal of Control, 22(4), 1422–1436.
- Carden, E.P. and Fanning, P. (2004). Vibration based condition monitoring: A review. Structural Health Monitoring, 3, 355–377.
- Chatzi, E.N., Smyth, A.W., and Masri, S.F. (2010). Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty. Structural Safety, 32, 326–337.
- Clinton, J.F., Bradford, S.C., Heaton, T.H., and Favela, J. (2006). The observed wander of the natural frequencies in a structure. Bulletin of the Seismological Society of America, 96, 237–257.
- Das, S., Saha, P., and Patro, S. (2016). Vibrationbased damage detection techniques used for health monitoring of structures: a review. Journal of Civil Structural Health Monitoring, 6(3), 477–507.
- Doebling, S.W., Farrar, C., and Prime, M.B. (1998). A summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 30(2), 1–34.
- Efimov, D., Perruquetti, W., Ra¨ıssi, T., and Zolghadri, A. (2013). Interval observers for time-varying discretetime systems. IEEE Transactions on Automatic Control, 58(12), 3218–3224.
- Farrar, C.R., Worden, K., Todd, M.D., Park, G., Nichols, J., Adams, D.E., Bement, M.T., and Farinholt, K. (2007). Nonlinear system identification for damage detection. Report LA-14353, Los Alamos National Laboratory (LANL), Los Alamos, NM., 1–161.
- Gouze, J.L., Rapaport, A., and Hadj-Sadok, M.Z. (2000). Interval observers for uncertain biological systems. Ecol Modelling, 133(1-2), 45–56.
- Herak, M. and Herak, D. (2010). Continuous monitoring of dynamic parameters of the dgfsm building (zagreb, croatia). Bulletin of Earthquake Engineering, 8(3), 657– 669.
- Huang, Q., Xu, Y., Li, J., Su, Z., and Liu, H. (2012). Structural damage detection of controlled building structures using frequency response function. Journal of Sound and Vibration, 331(15), 3476–3492.
- Hwang, H.Y. and Kim, C. (2004). Damage detection in structures using a few frequency response measurements. Journal of Sound and Vibration, 270(1-2), 1–14.
- Ikhouane, F., Ma˜nosa, V., and Rodellar, J. (2005). Adaptive control of a hysteretic structural system. Automatica, 41, 225–231.
- Kim, J.T., Ryu, Y.S., Cho, H.M., and Stubbs, N. (2003). Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Engineering Structures, 25(1), 57–67.
- Kong, X., Cai, C.S., and Hu, J. (2017). The state-of-theart on framework of vibration-based structural damage identification for decision making. Applied Sciences, 7(5), 497–510.
- Meslem, N., Martinez, J., Ramdani, N., and Besan¸con, G. (2020). An interval observer for uncertain continuoustime linear systems. International Journal of Robust and Nonlinear Control, 30(5), 1886–1902.
- Nayeri, R.D., Masri, S.F., Ghanem, R.G., and Nigbor, R.L. (2008). A novel approach for the structural identification and monitoring of a full-scale 17-story building based on ambient virbation measurement. Smart Materials ans Structures, 17(2), 1–19.
- Rotondo, D., Fernandez-Canti, R.M., Tornil-Sin, S., Blesa, J., and Puig, V. (2016). Robust fault diagnosis of proton exchange membrane fuel cells using a takagisugeno interval observer approach. International Journal of Hydrogen Energy, 41(4), 2875–2886.
- Smyth, A., Masri, S., Chassiakos, A., and Caughey, T. (1999). On-line parametric identification of mdof nonlinear hysteretic systems. Journal of Engineering Mechanics, 125, 133–142.
- Zhang, Z.H. and Yang, G.H. (2017). Event-triggered fault detection for a class of discrete-time linear systems using interval observers. ISA Transactions, 68, 160– 169.